Bachelor's Degree Programme in
Linguistic and Cultural Mediation

Linguistic and Cultural Mediation [LT5-21-21]
Enrolled in a.y. 2021/2022

Marco CORAZZA

Qualifica
Professore Associato
Incarichi
Direttore del Master in Quantum Machine Learning
Telefono
041 234 6921
E-mail
corazza@unive.it
SSD
Metodi matematici dell'economia e delle scienze attuariali e finanziarie [STAT-04/A]
Sito web
www.unive.it/persone/corazza (scheda personale)
Struttura
Dipartimento di Economia
Sito web struttura: https://www.unive.it/dip.economia
Sede: San Giobbe
Research Institute
Research Institute for Complexity

Corazza, Marco; Pizzi, Claudio; Marchioni, Andrea A financial trading system with optimized indicator setting, trading rule definition, and signal aggregation through Particle Swarm Optimization in COMPUTATIONAL MANAGEMENT SCIENCE, vol. 21 (ISSN 1619-697X)
DOI 2024, Articolo su rivista - Scheda ARCA: 10278/5062921


Barro D.; Corazza M.; Filograsso G. Environmental, social, and governance evaluation for European small and medium enterprises: A multicriteria approach in CORPORATE SOCIAL-RESPONSIBILITY AND ENVIRONMENTAL MANAGEMENT, vol. Version of Record online: 22 October 2024 - link esterno (ISSN 1535-3966)
DOI - URL correlato 2024, Articolo su rivista - Scheda ARCA: 10278/5084407


Caliciotti Andrea , Corazza Marco , Fasano Giovanni From regression models to Machine Learning approaches for long term Bitcoin price forecast in ANNALS OF OPERATIONS RESEARCH, vol. 336, pp. 359-381 (ISSN 1572-9338)
DOI - URL correlato 2024, Articolo su rivista - Scheda ARCA: 10278/5025580


Barro D.; Barzanti L.; Corazza M.; Nardon M. Fundraising management through Artificial Neural Networks in DECISIONS IN ECONOMICS AND FINANCE, vol. link esterno , pp. 1-19 (ISSN 1129-6569)
DOI - URL correlato 2024, Articolo su rivista - Scheda ARCA: 10278/5086467


Barro, Diana; Corazza, Marco; Filograsso, Gianni A Robust Sustainability Assessment for SMEs Based on Multicriteria Decision Aiding , Mathematical and Statistical Methods for Actuarial Sciences and Finance. MAF 2024, Springer, Cham, pp. 43-48 (ISBN 9783031642722; 9783031642739)
DOI 2024, Articolo su libro - Scheda ARCA: 10278/5068304