PROBABILITY THEORY

Anno accademico
2025/2026 Programmi anni precedenti
Titolo corso in inglese
PROBABILITY THEORY
Codice insegnamento
EM2Q11 (AF:561357 AR:327744)
Lingua di insegnamento
Inglese
Modalità
In presenza
Crediti formativi universitari
7
Livello laurea
Laurea magistrale (DM270)
Settore scientifico disciplinare
SECS-S/03
Periodo
I Semestre
Anno corso
1
Sede
VENEZIA
L’insegnamento è tra quelli caratterizzanti del corso di laurea Economia e Finanza, Curriculum ECONOMICS - QEM.
La prima parte del corso intende fornire una base di teoria della probabilità per poi concentrarsi, nella seconda parte, sull'inferenza statistica. L'uso di questi strumenti rappresenta la base per analizzare dati macroeconomici e finanaziari e di conseguenza interpretare una varietà di fenomeni economici.
1. CONOSCENZA E COMPRESIONE
1.1 Capire i fondamenti della teoria della probabilità
1.2 Capire il calcolo delle probabilità attraverso le variabili casuali
1.3 Capire gli strumenti dell’inferenza statistica
2. CAPACITA’ DI APPLICARE CONOSCENZA E COMPRENSIONE
2.1 Saper risolvere esercizi di calcolo delle probabilità
2.2 Saper risolvere esercizi di calcolo delle probabilità attraverso l’uso delle variabili causali
2.3 Sapere svolgere esercizi di inferenza statistica attraverso l’uso di stimatori e verifica di ipotesi
3. CAPACITA’ DI GIUDIZIO
3.1 Saper individuare riconoscere qual è lo strumento teorico da utilizzare il problema da risolvere
3.2 Saper interpretare i risultati ottenuti
statistica descrittiva e calcolo delle probabilità, matematica
Primo modulo:
Set definition, elementary operations with sets, basics of probability theory
Random variables, distribution functions, density and mass functions
Expected values, moments,
Common families of distributions,
Bivariate random variables, conditional distribution and independence, covariance and correlation
Random vectors

Secondo modulo:
Properties of a random sample: basic concepts, sums of random variables from a random sample, convergence concepts (CB chapter 5, sections 5.1, 5.2, 5.5)
Data reduction: sufficiency principle, likelihood principle, equivariance principle (CB chapter 6, sections 6.1,6.2.1, 6.3,6.4)
Point estimation: methods of finding estimators (method of moments, maximum likelihood), evaluating estimators (CB chapter 7, sections 7.1,7.2.1,7.2.2, 7.3)
Hypothesis testing: the likelihood ratio tests (LRTs), error probabilities and power function (CB chapter 8, sections 8.1,8.2.1,8.3.1)
Asymptotic evaluation: point estimation (consistency and efficiency), hypothesis testing (asymptotic distribution of LRTs) (CB chapter 10, sections 10.1.1,10.1.2,10.3.1)
Lecture notes, slides and exercises for the entire duration of course are made available using the Moodle pages of the course.
There are some suggested textbooks:
For Probability:
- Mood, A. et. al. (1974) Introduction to the Theory of Statistics, McGraw-Hill, Inc., NY (Chapters 1 to 5)
- Rice, J. (2007) Mathematical Statistics and Data Analysis, Thomson, Berkley, CA (Chapters 1, 2, 3, 4, 6)
For Inference:
- Casella, G. and Berger, R.L. (1990, 2002). Statistical Inference. Wadsworth publishing Co., Belmont, CA (Chapters 5 to 8)
Una prova intermedia scritta alla fine del primo periodo di lezione di 5 settimane, una seconda prova scritta al termine del secondo periodo di lezione di 5 settimane. Il voto finale sarà dato dalla media delle due prove.
Nelle rimanenti sessioni da gennaio a settembre l'esame si svolgerà in un'unica prova scritta
scritto
Per quanto riguarda la graduazione del voto (modalità con cui saranno assegnati i voti):
A. punteggi nella fascia 18-22 verranno attribuiti in presenza di:
- sufficiente conoscenza e capacità di comprensione del programma del corso;
- limitata capacità di applicare conoscenze formulando giudizi autonomi;
- sufficiente abilità di comunicare utilizzando appropriatamente il linguaggio tecnico della materia;
B. punteggi nella fascia 23-26 verranno attribuiti in presenza di:
- discreta conoscenza e capacità di comprensione del programma del corso;
- discreta capacità di applicare conoscenze formulando giudizi autonomi;
- discreta abilità di comunicare utilizzando appropriatamente il linguaggio tecnico della materia
C. punteggi nella fascia 27-30 verranno attribuiti in presenza di:
- buona od ottima conoscenza e capacità di comprensione del programma del corso;
- buona od ottima capacità di applicare conoscenze formulando giudizi autonomi;
- buona od ottima abilità di comunicare utilizzando appropriatamente il linguaggio tecnico della materia
D. la lode verrà attribuita in presenza di conoscenza e capacità di comprensione applicata in riferimento al programma, capacità di giudizio e abilità comunicative, eccellenti.
Il programma verrà svolto con un accurato equilibrio tra parte teorica ed esempi di esercizi in classe.
Programma definitivo.
Data ultima modifica programma: 19/03/2025