GESTIONE DEI DATI DIGITALI
- Anno accademico
- 2024/2025 Programmi anni precedenti
- Titolo corso in inglese
- DATA MANAGEMENT
- Codice insegnamento
- NS001B (AF:520073 AR:290147)
- Modalità
- In presenza
- Crediti formativi universitari
- 6
- Livello laurea
- Minor
- Settore scientifico disciplinare
- INF/01
- Periodo
- Estivo
- Anno corso
- 1
- Sede
- VENEZIA
Inquadramento dell'insegnamento nel percorso del corso di studio
L’obiettivo del modulo consiste nel fornire indicazioni metodologiche, teoriche e applicative per imparare a presidiare in modo efficace le fasi di acquisizione, archiviazione, elaborazione e rappresentazione dei dati digitali, con un focus specifico sulle potenzialità del Machine Learning e sulle principali funzioni degli strumenti di Data Analysis.
Alla fine del corso studentesse e studenti saranno in grado di elaborare un progetto di gestione dei dati digitali per la risoluzione di un problema pratico assegnato dal docente.
Risultati di apprendimento attesi
- essere in grado di descrivere le caratteristiche dei dati digitali e illustrare i criteri per valutare la qualità del dato
- essere in grado di descrivere le sei fasi in cui si articola il processo di gestione dei dati digitali
- essere in grado di descrivere i modelli fondamentali per l’elaborazione dei dati
- essere in grado di elencare alcune applicazioni software a supporto della gestione dei dati digitali
2. Capacità di applicare conoscenza e comprensione:
- essere in grado di adottare applicativi software per la ricerca e l’acquisizione di dati digitali
- essere in grado di utilizzare programmi per l’archiviazione e l’indicizzazione dei dati
- essere in grado di applicare metodi di base per elaborare i dati digitali
- essere in grado di implementare strumenti per la visualizzazione e la rappresentazione di dati
3. Capacità di giudizio:
- essere in grado di contestualizzare le conoscenze acquisite, individuando i modelli, i metodi e i software più adeguati all’output desiderato
4. Abilità comunicative:
- essere in grado di presentare in modo efficace i risultati dell’analisi dei dati
- essere in grado di interagire con i colleghi e con il docente, in modo funzionale agli obiettivi del corso
5. Capacità di apprendimento:
- essere in grado di utilizzare ed integrare informazioni provenienti da appunti, dispense, slide ed esercitazioni pratiche
- essere in grado di valutare il proprio grado di preparazione attraverso le attività in itinere di interazione e di laboratorio
Prerequisiti
Contenuti
PARTE PRIMA: Il tramonto dell’universo analogico
1. Il fascino discreto del digitale
- Distinzione tra “analogico” e “digitale”
- Gestione del ciclo di vita dell’informazione
- Relazione tra Uomo e Macchina
2. Viaggio al centro di Oasis
- Effetti della digitalizzazione sulla realtà
- Le sei sfere: astronomica, ecologica, politica, economica, sociale e individuale
- I principi della nuova era digitale
3. Ercole al bivio: decisione, futuro e complessità
- Fasi e caratteristiche del processo decisionale
- Metodi per la previsione del futuro
- Analisi dei sistemi complessi
4. La nuova intelligenza digitale
- Il concetto di “intelligenza digitale”
- Le sei dimensioni: acquisizione dei dati, memoria, calcolo, rappresentazione, attivazione e adattamento
- Intelligenza umana, IA e Intelligenza ibrida
PARTE SECONDA: Intelligenza digitale a sei dimensioni
5. Dal caos primordiale al regno dei bit
- "Datafication" e principi di Data Science
- Modalità di acquisizione e conversione dei dati digitali
- La struttura logica di un dataset
6. Alla ricerca del dato perduto
- Caratteristiche e funzioni della memoria digitale
- Quattro tipi di architettura logica della memoria
- Rapporto tra memoria digitale e organizzazione
7. Fisiologia del pensiero positronico
- Dai dati digitali alle informazioni
- Calcolo e tecniche di modellizzazione dei sistemi
- Algoritmi di Machine Learning: classificazione, regressione, clustering e analisi di serie temporali
8. Il colore dei dati
- Processo di rappresentazione e comunicazione di dati e informazioni
- Tipologie di grafici, diagrammi e infografica
- Principi multimediali di Data Visualization
9. La costruzione geometrica delle decisioni
- Attivazione e modelli di decisione meccanica
- Dashboard a supporto del processo decisionale
- Come trasformare i dati in decisioni
10. Intelligenza digitale allo specchio
- Adattamento ed evoluzione di un sistema dinamico
- Qualità dell'intelligenza digitale individuale e collettiva
- Monitoraggio e valutazione complessiva dell’intelligenza digitale
Testi di riferimento
[2] G.B. Ronsivalle, I. Baccan, A. Bersan, "The Orange Box. Il nuovo laboratorio di Machine Learning", Edizioni Wemole (in corso di stampa).
Modalità di verifica dell'apprendimento
Step 1 - Svolgimento di una prova scritta online sulle conoscenze teoriche di base (punteggio max = 15 punti; soglia minima superamento = 9 punti). La prova prevede la somministrazione di un questionario digitale composto da prove strutturate di diversa tipologia (scelta multipla-risposta singola, scelta multipla-risposta multipla, corrispondenza, completamento).
Step 2 - Elaborazione di un project work incentrato sull’applicazione delle tecniche elementari di gestione dei dati digitali (punteggio max = 15 punti; soglia minima superamento = 9 punti). La prova consiste nella creazione e nella presentazione di un breve report in cui studentesse e studenti devono descrivere le varie fasi del progetto di acquisizione, archiviazione, elaborazione e rappresentazione di dati funzionali alla risoluzione di un problema pratico assegnato dal docente.
Step 3 (facoltativo) - Colloquio orale sui contenuti del manuale di riferimento [1] (punteggio max = 3 punti, da aggiungere al punteggio conseguito negli step precedenti).