APPLIED PROBABILITY FOR COMPUTER SCIENCE

Anno accademico
2023/2024 Programmi anni precedenti
Titolo corso in inglese
APPLIED PROBABILITY FOR COMPUTER SCIENCE
Codice insegnamento
CM0546 (AF:451547 AR:245278)
Modalità
In presenza
Crediti formativi universitari
6
Livello laurea
Laurea magistrale (DM270)
Settore scientifico disciplinare
SECS-S/01
Periodo
I Semestre
Anno corso
1
Sede
VENEZIA
Spazio Moodle
Link allo spazio del corso
L’insegnamento ricade tra le attività educative del corso di laurea magistrale in Computer Science. Il suo scopo è quello di fornire allo studente gli strumenti fondamentali di Probabilità che sono alla base dell'analisi dei dati e la modellizzazione matematica in presenza di incertezza. Lo studente acquisirà competenze quantitative e conoscenze di alcuni dei modelli probabilistici di base e del software utilizzato per descrivere e analizzare i processi pertinenti, in particolare, nel campo dell'informatica.
La frequenza e la partecipazione alle attività formative proposte dal corso e lo studio individuale consentiranno agli studenti di:

1. Conoscenza e comprensione:
- conoscere e comprendere i modelli di probabilità che servono come fondamento ai metodi avanzati propri dell’apprendimento statistico per l'analisi dei dati
- conoscere e comprendere, in particolare i modelli di probabilità di tipo Markoviano e i fondamenti di alcuni processi stocastici utilizzati per rappresentare fenomeni dinamici in presenza di incertezza

2. Capacità di applicare conoscenza e comprensione:
- saper utilizzare programmi specifici per il calcolo con le principali distribuzioni di probabilità e la simulazione
- analizare in modo autonomo le proprietà delle catene di Markov, identificando le loro implicazioni
- saper utilizzare formule e terminologia adeguata in tutti i processi di applicazione e comunicazione delle conoscenze acquisite

3. Capacità di giudizio:
-saper contestualizzare le conoscenze acquisite, individuando i modelli e i metodi più adeguati alla situazione di interesse

4. Abilità comunicative:
-saper presentare in modo chiaro ed esaustivo i risultati ottenuti come soluzione di un problema probabilistico, utilizzando formule rigorose e una terminologia appropriata

5. Capacità di apprendimento:
-saper utilizzare ed integrare informazioni provenienti da appunti, libri, slide e sessioni pratiche
-saper valutare la propria preparazione utilizzando quiz ed esercizi di autovalutazione assegnati durante il corso
Calcolo di derivate e integrali a livello dei corsi standard di calcolo universitario (come riferimento, vedere i materiali richiamati nella sezione 12.3 del libro di testo).

Elementi dell'algebra matriciale a livello dei corsi standard di algebra lineare universitari, in particolare moltiplicazione e inversione di matrici, e risoluzione di sistemi di equazioni lineari (come riferimento, vedere i materiali richiamati nella sezione 12.4 del libro di testo T1).

La conoscenza di base del calcolo delle probabilità a livello di un corso di laurea triennale di Informatica è consigliata. In particolare eventi, assiomi della probabilità, probabilità condizionata e indipendenza, variabili casuali, valore atteso, varianza, covarianza e correlazione, principali distribuzioni di probabilità discrete e continue, teorema del limite centrale, legge dei grandi numeri. (questi argomenti, trattati nei capitoli 2-3 del libro di testo T1, verranno richiamati durante il corso)
1. Revisione dei concetti di base della Probabilità e le Variabili casuali
- Probabilità assiomatica, probabilità condizionata e indipendenza
- Variabili casuali discrete e relative distribuzioni
- Distribuzioni continue
- Vettori casuali: distribuzioni congiunte, marginali e condizionate
2. Processi stocastici
- Processi di Markov e catene di Markov
- Catene di Markov a tempo discreto
- Processi di conteggio
- Catene di Markov a tempo continuo
- Processo di Poisson
- Simulazione di processi stocastici
Testi principali:
1. Probability and statistics for computer scientists. Baron, Michael, 2. ed.: Chapman & Hall/CRC, 2014
(Libro e e-book disponibili attraverso il Sistema Bibliotecario di Ateneo (SBA) https://www.unive.it/pag/9756/ )
2. Probability with Applications in Engineering, Science, and Technology. Carlton, Matthew A. and Devore, Jay L., 2 ed.: Springer, Cham, 2017
(e-book disponibile su Springer-Link https://link.springer.com/book/10.1007/978-3-319-52401-6 )

Altre risorse:
Letture e materiali integrativi distribuiti durante il corso tramite la piattaforma Moodle
Il raggiungimento degli obiettivi dell'insegnamento viene valutato attraverso la partecipazione alle attività e alle esercitazioni assegnate durante il corso, un
progetto da svolgere in squadra e un esame final scritto.

L'esame finale scritto ha un valore di 30 punti ed è composto da esercizi simili a quelli sui libri di testo o quelli svolti in classe e assegnati in Moodle durante il corso.
Durante il compito è consentito l'uso di formulario e computer.
L'utilizzo del pacchetto statistico R è parte integrante del programma e argomento d'esame.

Il progetto in squadra ha un valore massimo di 6 punti. La capacità di formare e lavorare in squadra fa parte della valutazione: ogni studente e responsabile di trovare la propria squadra e tutti i membri della squadra riceveranno lo stesso voto. I lavori individuali NON saranno ammessi. Ulteriori dettagli sul progetto e date di consegna saranno disponibili su Moodle.

Gli studenti frequentanti le lezioni possono accumulare fino a un massimo di 3 punti da aggiungere al voto del compito scritto, tramite esercizi e quiz di Moodle da svolgere in date prestabilite (disponibili su Moodle).

Eventuali punti extra accumulati e punti per lavoro in squadra sono applicabili per tutti e 4 gli esami dell'anno accademico, ma perdono la loro validità in caso di rinuncia al voto, non essendo più validi per appelli successivi.
Lezioni frontali ed esercitazioni in classe anche con l'uso del programma R. Utilizzo della piattaforma Moodle per la verifica dell'apprendimento in itinere.
Inglese
scritto
Programma definitivo.
Data ultima modifica programma: 14/03/2023