Machine Learning

Anno accademico
2021/2022 Programmi anni precedenti
Titolo corso in inglese
Machine Learning
Codice insegnamento
PHD143 (AF:364614 AR:195780)
Modalità
In presenza
Crediti formativi universitari
3 su 6 di Econometrics and Machine Learning
Livello laurea
Corso di Dottorato (D.M.45)
Settore scientifico disciplinare
ING-INF/05
Periodo
I Semestre
Anno corso
1
Sede
VENEZIA
Spazio Moodle
Link allo spazio del corso
Il corso si propone di fornire un'introduzione ai principi, alle tecniche e alle principali applicazioni dell'intelligenza artificiale. L'obiettivo è quello di portare gli studenti ad avere competenze critiche nella scelta ed implementazione di una soluzione di analisi dei dati socio-economici ed ambientali basata su tecniche di machine learning.
. Conoscenza e comprensione
1.1. acquisire i modelli principali di rappresentazione e l'utilizzo automatico della conoscenza;
1.2. acquisire i modelli principali di classificazione automatica e comprenderne la relazione con la rappresentazione del dato;

2. Capacità di applicare conoscenza e comprensione
2.1. saper applicare i modelli studiati a cproblemi reali;
2.2. sapere valutare criticamente a performance ed il comportamento di un modello applicato ad un problema concreto;

3. Capacità di giudizio
3.1. sapere comprendere quali caratteristiche dei vari modelli di machine learning che meglio si adattano ad un problema dato;
3.2. saper valutare criticamente le caratteristiche teoriche dei modelli proposti;
Il corso richiede conoscenze di analisi matematica, ottimizzazione lineare e non-lineare, calcolo delle probabilità e statistica inferenziale.
Learning:
Vector Model
discriminative/generative classification
unsupervised classification
kernel methods
feature synthesis/selection
manifold learning
deep learning
L'apprendimento è volto a permettere allo studente di acquisire competenze pratiche nella scelta, implementazione ed analisi di sistemi ad intelligenza artificiale.

La verifica dell'apprendimento avviene attraverso una serie di progetti con consegna in itinere o un progetto finale.

Entrambe le forme progettuali sono corredate da una analisi del comportamento degli algoritmi utilizzati ed ha lo scopo di permettere allo studente di acquisire e dimostrare competenze pratiche nella scelta, implementazione ed analisi di sistemi ad intelligenza artificiale.
Tutta la didattica è rivolta a permettere allo studente di acquisire competenze pratiche nella scelta ed analisi critica delle tecniche e metodologie di intelligenza artificiale.
La verifica dell'apprendimento avviene attraverso una serie di progetti in itinere ed una prova orale o un unico progetto ed una prova orale. L'obiettivo dei progetti è quello di permettere allo studente di applicare e verificare immediatamente le competenze acquisite, in particolar modo la capacità di analisi critica del comportamento e dell'applicabilità degli algoritmi studiati.
orale
Programma definitivo.