ANALISI PREDITTIVA

Anno accademico
2022/2023 Programmi anni precedenti
Titolo corso in inglese
PREDICTIVE ANALYTICS
Codice insegnamento
CT0429 (AF:339919 AR:180748)
Modalità
In presenza
Crediti formativi universitari
6
Livello laurea
Laurea
Settore scientifico disciplinare
SECS-S/01
Periodo
I Semestre
Anno corso
3
Sede
VENEZIA
Spazio Moodle
Link allo spazio del corso
Questo corso fa parte delle attività educative interdisciplinari del curriculum Data Science del Corso di laurea in Informatica. Il corso è progettato per fornire una panoramica di diversi strumenti disponibili per la modellazione predittiva, a livello intermedio.
In corso tratta i concetti principali nei modelli lineari e nei modelli lineari generalizzati, e possibili estensioni di tali modelli. L'attenzione è rivolta a fornire sia le principali informazioni sulle basi statistico-matematiche dei modelli e la dimostrazione dell'effettiva implementazione dei metodi attraverso l'uso di software statistici. Il corso prevede una miscela di teoria e codice, con particolare attenzione ai temi della riproducibilità delle analisi. Vengono anche presentati esempi di dati reali e casi di studio.
* Competenze generali

Identificare le tecniche di analisi dei dati più appropriate per un problema di interesse e sapere come applicare le tecniche per l'analisi, la progettazione e la soluzione dei problemi.
Applicare tecniche di elaborazione dati a dati reali anche di grande dimensione utilizzando software statistico appropriato.
Essere in grado di generare nuove idee e anticipare nuove situazioni, nei contesti dell'analisi dei dati e del processo decisionale.

* Competenze specifiche

Utilizzare i risultati classici di inferenza e regressione come base per metodi avanzati di predizione e classificazione.
Saper interpretare e presentare i risultati di un'analisi statistica.
Identificare e selezionare gli strumenti software appropriati per il trattamento dei dati.
Identificare correttamente il tipo di problema statistico corrispondente a determinati obiettivi e dati, così come le metodologie più appropriate da applicare agli obiettivi e ai dati.
Conoscere come progettare specifici sistemi di elaborazione dati per un tipo di problema statistico (classificazione, stima, previsione, ecc.)
Utilizzare conoscenze pregresse di algebra lineare per l'applicazione nei metodi di analisi dei dati.
Si assume che gli studenti abbiano raggiunto gli obiettivi formativi dei corsi
Calcolo 1
Calcolo 2
Algebra
Probabilità e Statistica
Analisi dei dati
anche senza avere necessariamente superato l’esame.
1. Introduzione
1.1 Panoramica del corso
1.2 Che cos'è la modellazione predittiva?
1.3 Notazione generale e background

2. Modelli lineari I: modello lineare semplice e multiplo
2.1 Formulazione del modello e minimi quadrati
2.2 Presupposti del modello
2.3 Inferenza per i parametri del modello
2.4 Previsione
2.5 ANOVA
2.6 Modello adatto

3. Modelli lineari II: selezione del modello, estensioni e diagnostica
3.1 Selezione del modello
3.2 Uso di predittori qualitativi
3.3 Relazioni non lineari
3.4 Diagnostica del modello
3.5 Possibilii criticità nei modelli di regressione

4. Modelli lineari generalizzati
4.1 Formulazione e stima del modello
4.2 Inferenza per i parametri del modello
4.3 Previsione
4.4 Devianza
4.5 Selezione del modello
4.6 Diagnostica del modello

Il programma è soggetto a piccole modifiche se necessarie nella durata del corso e/o del calendario accademico. Viene inoltre incoraggiata la possibilità per gli studenti di chiedere attivamente di modificare parzialmente il programma per rispondere ad esigenze specifiche.
Julian J. Faraway, 2014. Linear Models with R Second Edition, Chapman and Hall/CRC
Julian J. Faraway, 2016. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition Chapman and Hall/CRC
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning. Springer
L'esame si svolge in laboratorio informatico e si compone di due parti: una parte scritta e una parte in R. Entrambe le parti si compongono di diversi esercizi volti a valutare
1. le conoscenze della teoria degli argomenti del corso,
2. la capacità di applicare la teoria per risolvere problemi reali.
3. la capacità di usare il software R e interprerare l'output del software per risolvere problemi reali
Le lezioni consistono in un misto di teoria (descrizione dei metodi) e pratica (implementazione e uso pratico dei metodi). L'implementazione dei metodi è svolta tramite il linguaggio statistico R. Gli studenti sono incoraggiati a portare il proprio laptop e a provare il codice durante alcune parti delle lezioni.
Italiano
scritto
Programma definitivo.
Data ultima modifica programma: 06/05/2022