APPLIED PROBABILITY FOR COMPUTER SCIENCE

Anno accademico
2020/2021 Programmi anni precedenti
Titolo corso in inglese
APPLIED PROBABILITY FOR COMPUTER SCIENCE
Codice insegnamento
CM0546 (AF:335487 AR:175930)
Modalità
In presenza
Crediti formativi universitari
6
Livello laurea
Laurea magistrale (DM270)
Settore scientifico disciplinare
SECS-S/01
Periodo
I Semestre
Anno corso
1
Sede
VENEZIA
Spazio Moodle
Link allo spazio del corso
L’insegnamento ricade tra le attività educative del corso di laurea magistrale in Computer Science. Il suo scopo è quello di fornire allo studente gli strumenti fondamentali di Probabilità e Statistica che sono alla base dell'analisi dei dati in presenza di incertezza. Lo studente acquisirà competenze quantitative e conoscenze di alcuni dei modelli probabilistici di base e del software utilizzato per descrivere e analizzare i processi pertinenti, in particolare, nel campo dell'informatica.
La frequenza e la partecipazione alle attività formative proposte dal corso e lo studio individuale consentiranno agli studenti di:

1. Conoscenza e comprensione:
- conoscere e comprendere i modelli di probabilità e le tecniche statistiche che servono come fondamento ai metodi avanzati propri dell’apprendimento statistico per l'analisi dei dati
- conoscere e comprendere, in particolare i modelli di probabilità di tipo Markoviano e i fondamenti dei metodi di Monte Carlo

2. Capacità di applicare conoscenza e comprensione:
- saper utilizzare programmi specifici per il calcolo con le principali distribuzioni di probabilità e la simulazione
- analizare in modo autonomo le proprietà delle catene di Markov, identificando le loro implicazioni
- applicare i metodi di Monte Carlo e Markov Chain Monte Carlo per risolvere alcuni problemi pratici
- saper utilizzare formule e terminologia adeguata in tutti i processi di applicazione e comunicazione delle conoscenze acquisite

3. Capacità di giudizio:
-saper contestualizzare le conoscenze acquisite, individuando i modelli e i metodi più adeguati alla situazione di interesse

4. Abilità comunicative:
-saper presentare in modo chiaro ed esaustivo i risultati ottenuti come soluzione di un problema probabilistico, utilizzando formule rigorose e una terminologia appropriata

5. Capacità di apprendimento:
-saper utilizzare ed integrare informazioni provenienti da appunti, libri, slide e sessioni pratiche
-saper valutare la propria preparazione utilizzando quiz ed esercizi di autovalutazione assegnati durante il corso
Calcolo di derivate e integrali a livello dei corsi standard di calcolo universitario (come riferimento, vedere i materiali richiamati nella sezione 12.3 del libro di testo).

Elementi dell'algebra matriciale a livello dei corsi standard di algebra lineare universitari, in particolare moltiplicazione e inversione di matrici, e risoluzione di sistemi di equazioni lineari (come riferimento, vedere i materiali richiamati nella sezione 12.4 del libro di testo).

Conoscenza di base del calcolo delle probabilità a livello di un corso di laurea triennale di Informatica, in particolare eventi, assiomi della probabilità, probabilità condizionata e indipendenza, variabili casuali, valore atteso, varianza, covarianza e correlazione, principali distribuzioni di probabilità discrete e continue, teorema del limite centrale, legge dei grandi numeri. (questi argomenti, trattati nei capitoli 2-3 del libro di testo, verranno richiamati durante il corso soltanto in modo superficiale, assumendoli per noti)
1. Revisione dei concetti di base della Probabilità e le Variabili casuali
- Probabilità assiomatica, probabilità condizionata e indipendenza
- Variabili casuali discrete e relative distribuzioni
- Distribuzioni continue
2. Simulazione metodo di Monte Carlo
- Simulazione di variabili casuali
- Risoluzioni di problemi con il metodo di Monte Carlo
3. Processi stocastici
- Processi di Markov e catene di Markov
- Processi di conteggio
- Simulazione di processi stocastici
4. Revisione dei concetti di base della Statistica
- Popolazione e campione, parametri e statistiche
- Statistica descrittiva
5. Inferenza statistica
- Stima dei parametri
- Intervalli di confidenza
- Test d'ipotesi
- Inferenza Bayesiana
1. Testo principale:
Probability and statistics for computer scientists. Baron, Michael, 2. ed. Boca Raton [etc.] : Chapman & Hall/CRC, 2014
(Libro e e-book disponibili attraverso il Sistema Bibliotecario di Ateneo (SBA) https://www.unive.it/pag/9756/ )

2. Altre risorse:
Letture e materiali integrativi distribuiti durante il corso tramite la piattaforma Moodle
Il raggiungimento degli obiettivi dell'insegnamento viene valutato attraverso la partecipazione alle attività e alle esercitazioni assegnate durante il corso, un
progetto in squadra e un esame final scritto.

L'esame finale scritto ha un valore di 25 punti ed è composto da esercizi simili a quelli svolti in classe e assegnati in Moodle durante il corso.
Durante il compito è consentito l'uso di appunti, libri e calcolatrice.
L'utilizzo del pacchetto statistico R è parte integrante del programma e argomento d'esame.

Il progetto in squadra ha un valore massimo di 5 punti. Tutti i membri della squadra riceveranno lo stesso voto per il progetto.

Gli studenti frequentanti le lezioni possono accumulare, partecipando alle esercitazioni in classe, fino a un massimo di 3 punti da aggiungere al voto del compito scritto.
Lezioni frontali ed esercitazioni in classe anche con l'uso del programma R. Utilizzo della piattaforma Moodle per la verifica dell'apprendimento in itinere.
Inglese
scritto
Programma definitivo.
Data ultima modifica programma: 19/04/2020