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tingale densities suggested in Franke et al. [11] and Bellini and Sgarra
[4]. We give sufficient conditions for comparison based on the classical
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1 Introduction

The payoffs of the most common financial derivatives, such as European call or
put options, are convex functions of the underlying asset. It is then very natural
to introduce a convex order relationship between equivalent martingale measures
(EMMs henceforth):

Q1 ≤cx Q2 if EQ1
[h(ST )] ≤ EQ2

[h(ST )], for each convex payoff h(ST );

that is, Q2 assigns higher prices to each convex payoff. Since the expected value
of the underlying is equal to the forward price under all EMMs, the necessary
condition for convex ordering is always automatically satisfied.

Mathematical Methods in Economics and Finance – m2ef
Vol. 7, No. 1, 2012



2 Fabio Bellini

It is not easy to trace back the first reference in which the idea of convex or-
dering of EMMs appears explicitly in the financial literature; it is surely present
in several papers either related to option pricing bounds or to the comparison
of option prices in different models. For example, El Karoui et al. [10] compared
option prices in a stochastic volatility model with a corresponding local volatil-
ity model; Møller [24] compared several martingale measures in the context of
compound Poisson processes; Bergenthum and Rüschendorf [5] provided very
general criteria for the convex comparison of semimartingales, although their
results do not apply in the discrete time case; Bergenthum and Rüschendorf
[6] treated in full details the case of Lévy processes, proving comparison results
based on the Lévy characteristics. In the context of stochastic volatility mod-
els, Henderson [18] and Henderson et al. [19] provided an ordering result for
p-optimal martingale measures.

In this paper we focus on minimal divergence martingale measures Qf (MD-
MMs henceforth), that are defined as the minimizers of an f -divergence func-
tional over the set M of EMMs:

Qf = arg min
Q∈M

Hf (Q,P ),

with

Hf (Q,P ) = EP

[
f

(
dQ

dP

)]
,

where f : (0,+∞)→ (0,+∞) is strictly convex and f(1) = 0.
From an intuitive point of view, Hf (Q,P ) represents a sort of pseudodistance

between Q and P ; indeed if Q = P , then Hf (Q,P )=0. The MDMMs are the
martingale measures that are closest to P with respect to Hf (Q,P ).

The class of MDMMs has been thoroughly studied in the financial literature;
it includes as special cases the minimal entropy martingale measure (MEMP),
the minimal reverse entropy, the minimal variance, the p-optimal and the min-
imal Hellinger martingale measures. A general treatment of the necessary and
sufficient conditions for the existence of MDMMs in semimartingale models can
be found in [15]. As it is well known, the problem of divergence minimization
arises naturally as the dual of a utility maximization problem (see [15], [3] or [9]
and references therein).

We start in a one period setting by refining comparisons results based on the
elasticity of the EMM density that have been suggested by Franke et al. [11]
and Bellini and Sgarra [4]. In particular, we show how the classical notion of
relative convexity (extensively applied in the financial economics literature by
Arrow and by Pratt [28]) can be used to provide sufficient conditions for the
convex comparison of EMMs. In [4] we applied similar results to show that the
Esscher martingale measure introduced in [13] and the MEMP introduced in [12]
are always comparable, and which one is dominating depends on the sign of the
risk premium of the underlying asset. As a more general example, we consider
here the so called second-order Esscher martingale measures introduced in [25]
and show that they are also an ordered family.
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We then show that in the special case of power divergences, defined by:

fα(t) =


t ln t− t+ 1 α = 1
− ln t+ t− 1 α = 0
tα−α(t−1)−1

α(a−1) α 6= 0, α 6= 1

the corresponding MDMMs are always ordered and α1 ≤ α2 =⇒ Qfα2
≤cx Qfα1

.
A similar result has been obtained by Henderson [18] and Henderson et al. [19]
in the context of stochastic volatility models.

Finally we discuss the extension of this comparison to a multiperiod setting.
The main problem is that in general the density of a MDMM cannot be written
as the product of one period divergence-minimizing densities, so the extension of
the comparison result from the one period to the multiperiod case is not trivial.
However, following [17] or [14], it is quite natural to consider local MDMM, that
by construction are defined as the product of one period divergence-minimizing
changes of measure. By applying the same procedure of [4], we show that local
power MDMMs are ordered as in the one period case.

The paper is structured as follows: in Section 2 we discuss criteria for convex
comparison in the one period case, in Section 3 we apply them to the case of
power MDMMs, in Section 4 we discuss multiperiod extensions and provide
numerical examples.

2 Convex comparison of martingale measures: one period
case

We consider a one period model with two assets: the risky asset has initial price
S0 > 0 and terminal random price ST > 0, while the riskless asset has initial
price B0 and terminal price B0e

rT , where r > 0 is the riskfree rate. In this
elementary model there are no arbitrage opportunities if and only if:

P (ST > S0e
rT ) > 0 and P (ST < S0e

rT ) > 0,

and this is equivalent to the existence of a probability measure Q ∼ P such that:

EQ[ST ] = S0e
rT . (1)

Any probability measure Q ∼ P satisfying (1) will be called an equivalent
martingale measure (EMM henceforth). Since the great majority of European
payoffs are convex functions of the underlying price at maturity ST , it is very
natural to introduce the notion of convex ordering of martingale measures:

Definition 1. We say that Q1 ≤cx Q2 if

EQ1
[h(ST )] ≤ EQ2

[h(ST )]

for each convex function h : [0,+∞)→ R.
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We have that Q1 ≤cx Q2 if the price attributed by Q2 to each convex payoff
is greater or equal to the price under Q1. In particular, under Q2 the prices of all
European call and put are higher or equal than the corresponding prices under
Q1. Assuming that the EMMs Q1 and Q2 are absolutely continuous with respect
to P , we introduce the Radon-Nikodym densities:

ϕ1(s) =
dQ1

dP
, ϕ2(s) =

dQ2

dP

that satisfy:

ϕ1, ϕ2 ∈ L1 ([0,+∞), P ) , ϕ1, ϕ2 ≥ 0 P-a.s.,∫ +∞

0

ϕ1(s)dP (s) =

∫ +∞

0

ϕ2(s)dP (s) = 1,∫ +∞

0

sϕ1(s)dP (s) =

∫ +∞

0

sϕ2(s)dP (s) = S0e
rT . (2)

All the standard results about convex order that can be found in [26] or [29]
do apply; in particular, we have the well known characterization:

Proposition 1. Let ϕ1 and ϕ2 be as in (2); then Q1 ≤cx Q2 if and only if for

each K > 0 we have
∫K
0

∫ t
0
ϕ1(s)dP (s)dt ≤

∫K
0

∫ t
0
ϕ2(s)dP (s)dt.

An important sufficient condition for convex ordering is the cut criterion, that
goes back at least to [22]. In order to state it properly, we recall the definition
of the number of cuts between two functions (see for example [29]):

Definition 2. Let ϕ1 and ϕ2 be as in (2); we say that ϕ1 and ϕ2 cut n times
if there exist a partition P = {I1, I2, ..., In+1} of [0,+∞) into disjoint intervals
Ik such that:
i) P (Ik) > 0,
ii) ϕ2 − ϕ1 is not P -a.s. equal to 0 and has a constant sign on each Ik,
iii) ϕ2 − ϕ1 changes sign from each interval Ik to the next.
The alternating sequence of signs of ϕ2−ϕ1 on the intervals Ik is called the sign
sequence of ϕ2 − ϕ1.

The cut criterion is the following (see [11] and [4]):

Proposition 2. Let ϕ1 and ϕ2 be as in (2); then ϕ1 and ϕ2 cut at least two
times. If ϕ1 and ϕ2 cut two times with sign sequence +,−,+, then Q1 ≤cx Q2.

In many models the densities ϕi are smooth functions; in this case it is
possible to define their elasticities as

ηi(s) = −sϕ
′
i(s)

ϕi(s)
= −s d

ds
lnϕ(s). (3)

Franke et al. [11] proved a sufficient condition for convex ordering based on
the elasticities ηi:
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Proposition 3. Let ϕ1 and ϕ2 be as in (2) and decreasing. Let η1 and η2 be as
in (3). If η1 is constant and η2 is decreasing, then Q1 ≤cx Q2.

In the Black-Scholes model the pricing density is a power function of the price
of the underlying at maturity and hence has constant elasticity, so Proposition
3 can be applied to assess underpricing or overpricing with respect to the Black-
Scholes model. A similar comparison result, based on the semi-elasticities instead
of the elasticities, can be found in the actuarial literature in [20].

Bellini and Sgarra [4] proposed a generalization of the criterion of Franke
et al. [11]; I’m presenting here a slightly more general formulation, based on
essentially the same ideas:

Proposition 4. Let ϕ1, ϕ2 ∈ C1(0,+∞) be as in (2), with ϕ1 6= ϕ2. If any of
the following conditions hold, then ϕ1 and ϕ2 cut exactly two times, and hence
Q1 and Q2 are comparable in the convex order:
i) ϕ2 − ϕ1 is convex or concave,
ii) ϕ′2 − ϕ′1 is monotone,

iii) the ratio
ϕ′2
ϕ′1

is monotone,

iv) the ratio of elasticities η2
η1

is monotone.

Proof. From Proposition 2 we know that ϕ1 and ϕ2 cut at least two times;
assume by contradiction that ϕ1 and ϕ2 cut in three or more points. Under i) or
ii), this would imply that ϕ1 = ϕ2, a contradiction. To prove iii), we note that if
ϕ1 and ϕ2 cut in three or more points, there exist s1 < s2 < s3 < s4 such that
(ϕ2 − ϕ1)(s1) > 0, (ϕ2 − ϕ1)(s2) < 0, (ϕ2 − ϕ1)(s3) > 0, (ϕ2 − ϕ1)(s4) < 0, or
the same inequalities, but with reversed signs. In both cases from the Lagrange
theorem the derivative ϕ′2 − ϕ′1 must change sign at least two times; that is,
there must exist s5, s6 and s7, with s1 < s5 < s2 < s6 < s3 < s7 < s4, such that
(ϕ′2−ϕ′1)(s5) < 0, (ϕ′2−ϕ′1)(s6) > 0, (ϕ′2−ϕ′1)(s7) < 0, or the same inequalities
but with reversed signs. Hence:

ϕ′2(s5)

ϕ′1(s5)
< 1,

ϕ′2(s6)

ϕ′1(s6)
> 1,

ϕ′2(s7)

ϕ′1(s7)
< 1,

a contradiction with iii). In order to prove iv), we remark that the ratio of
elasticities is given by:

η2(s)

η1(s)
=
ϕ′2(s)

ϕ′1(s)

ϕ1(s)

ϕ2(s)
=

d
ds lnϕ2(s)
d
ds lnϕ1(s)

.

If ϕ1 and ϕ2 cut in three points, then also lnϕ1 and lnϕ2 cut in three points;
hence we arrive to a contradiction as in iii). 2

We remark that Proposition 4 provides only a sufficient condition for com-
parability, without specifying which martingale measure is dominating; this will
be specified later, in the more general Propositions 6 and 7.

We recall now the classical notion of comparative convexity, that has been
introduced by Hardy, Littlewood and Polya and extensively applied in finance
by Arrow and by Pratt [28]. For a modern treatment see for example [27].
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Definition 3. Let ϕ1, ϕ2 : (0,+∞)→ (0,+∞). We say that ϕ2 is more convex
than ϕ1 and write ϕ1 � ϕ2 if ϕ2 = h(ϕ1), with h convex.

In order to state the properties of the relation �, we assume that ϕ1 and
ϕ2 are both strictly increasing or strictly decreasing. From a financial point of
view the first case is less realistic, since if ϕ(s) is increasing from the covariance
inequality it would follow that:

S0e
rT = E[STϕ(ST )] ≥ E[ST ]E[ϕ(ST )] = E[ST ],

that corresponds to a negative risk premium on the underlying, in contrast with
a risk averse representative agent equilibrium.

The following characterizations of comparative convexity are well known:

Proposition 5. Let ϕ1, ϕ2 ∈ C2(0,+∞) be both strictly increasing (respectively,
decreasing). Then the relationship � is a partial preorder. Moreover ϕ1 � ϕ2 is
equivalent to any of the following statement:
a) ϕ2 ◦ ϕ−11 is strictly increasing and convex;

b)
ϕ′2
ϕ′1

is nondecreasing (resp. nonincreasing);

c) for each s,
ϕ′′2(s)

ϕ′2(s)
≥ ϕ′′1(s)

ϕ′1(s)
(resp.

ϕ′′2(s)

ϕ′2(s)
≤ ϕ′′1(s)

ϕ′1(s)
);

d) for each random variable X,

ϕ−12 E[ϕ2(X)] ≥ ϕ−11 E[ϕ1(X)] (resp. ϕ−12 E[ϕ2(X)] ≥ ϕ−11 E[ϕ1(X)] ).

Comparative convexity gives a very general sufficient condition for convex
comparison of EMMs:

Proposition 6. Let ϕ1, ϕ2 ∈ C1(0,+∞) be as in (2), with ϕ1 6= ϕ2. If ϕ1�ϕ2,
then Q1 ≤cx Q2. More generally, if h ◦ ϕ1 � h ◦ ϕ2 with h strictly increasing,
then Q1 ≤cx Q2.

Proof. If ϕ1 � ϕ2, then ϕ1 and ϕ2 cannot cut in three or more points, unless
ϕ1 = ϕ2; it follows that Q1 ≤cx Q2. Similarly, if h ◦ ϕ1 � h ◦ ϕ2 then h ◦ ϕ2

and h ◦ ϕ1 cannot cut in three or more points, that implies that also ϕ1 and ϕ2

cannot cut in three or more points. 2

Combining this general sufficient condition with the characterizations of com-
parative convexity, we get the following generalization of Proposition 4:

Proposition 7. Let ϕ1, ϕ2 ∈ C2(0,+∞) be as in (2) and decreasing, with ϕ1 6=
ϕ2. If any of the following conditions hold, then Q1 ≤cx Q2:

i)
ϕ′2
ϕ′1

is nonincreasing;

ii) for each s,
ϕ′′2 (s)
ϕ′2(s)

≤ ϕ′′1 (s)
ϕ′1(s)

;

iii) the ratio of elasticities η2
η1

is nonincreasing;

iv) for any strictly increasing h,
ϕ′2(s)
ϕ′1(s)

h′(ϕ2)
h′(ϕ1)

is nonincreasing.
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We present now some examples. The minimal entropy martingale measure
(MEMP henceforth) has a density of the form:

ϕ1(ST ) =
exp(λ1ST )

E[exp(λ1ST )]
,

and is obtained through to the minimization of relative entropy defined as

H(Q,P ) = EP [ϕ lnϕ],

that corresponds to the divergence f(x) = x lnx (see for example [12]).
The Esscher martingale measure, has instead a density of the form:

ϕ2(XT ) =
exp(λ2XT )

E[exp(λ2XT )]
=

Sλ2

T

E[Sλ2

T ]
,

where XT = ln
(
ST
S0

)
represents the logreturn (see for example [13]).

In [4] we applied the preceding comparison results to show that the MEMP
and the Esscher measure are always comparable in the convex order, with the
Esscher measure dominating if E[ST ] > S0e

rT , and the MEMP dominating in
the opposite case. Indeed, since

η1(ST ) = −λ1ST , η2(ST ) = −λ2,

and since λ1 and λ2 have the same sign, the elasticity ratio

η2(ST )

η1(ST )
=

λ2
λ1ST

is decreasing. When E[ST ] > S0e
rT (positive risk premium on the underlying),

both densities are decreasing and Esscher dominates; in the other case E[ST ] <
S0e

rT the densities are increasing and MEMP dominates; a numerical illustration
is reported in Fig. 1.

Monfort and Pegoraro [25] introduced second order Esscher measures with
the following densities:

ϕ(XT ) =
exp(λXT + γX2

T )

E[exp(λXT + γX2
T )]

, (4)

for suitable parameters λ and γ that satisfy the risk neutrality conditions (2).
This family has an additional parameter γ so it can be used in econometric es-
timations of the state price density ϕ based on real option prices. We show that
second order Esscher measures are always ordered; a straightforward computa-
tion gives:

η(ST ) = −λ− 2γ ln

(
ST
S0

)
= −λ− 2γXT
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Fig. 1. Convex comparison between Esscher martingale measure (dotted line) and
MEMP (continuous line). Since in this example the risk premium on the underlying is
positive, the Esscher measure is dominating

and considering different second order Esscher measures Q1 and Q2 with param-
eters respectively λ1,γ1 and λ2,γ2 the elasticity ratio is given by:

r(ST ) =
η1(ST )

η2(ST )
=
λ1 + 2γ1 ln

(
ST
S0

)
λ2 + 2γ2 ln

(
ST
S0

) ,
that is always monotone since:

r′(ST ) = 2
γ1λ2 − γ2λ1

ST (λ2 + 2γ2 lnST )2
.

These densities are not necessarily monotone functions of the underlying price
at maturity ST ; an example of comparison is reported in Fig. 2.

3 Minimal f-divergences measures

The notion of f -divergence between probability measures has been introduced by
Csiszar [8] and independently by Ali and Silvey [1]. We recall the basic definition
and properties.

Definition 4. Let f : (0,+∞) → R be convex with f(1) = 0. Let Q and P
be probability measures on (Ω,F ), with Q � P and ϕ = dQ

dP . The f -divergence
Hf (Q,P ) between Q and P is defined as follows:

Hf (Q,P ) := EP

[
f

(
dQ

dP

)]
= EP [f(ϕ)]. (5)
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Fig. 2. Convex comparison between second order Esscher martingale measures, for
different values of the parameter γ in (4): γ=0 (continuous line), γ=2 (dashed line),
γ=4 (dotted line)

The basic properties of f -divergences are collected in the following proposi-
tion (see for example the monography [23] and the references therein):

Proposition 8. Let Hf (Q,P ) as in (5). Then we have the following:
i) Hf (Q,P ) ≥ 0, and if f is strictly convex then Hf (Q,P ) = 0⇒ Q = P ;
ii) Hf (Q,P ) is jointly convex in Q and P and convex in dQ/dP ;
iii) If G ⊂ F , then Hf (Q|G, P |G) ≤ Hf (Q,P );
iv) Hf (Q,P ) = supG⊂F Hf (Q|G, P |G), with G finite partition;
v) Hf (P,Q) = Hf∗(Q,P ), where f∗(t) := tf( 1

t ).

In the financial literature, Goll and Rüschendorf [15] provided necessary and
sufficient conditions for the existence of MDMMs in general semimartingale mod-
els. We limit ourselves to the class of the so called power divergences, defined by
means of the parametric family fα (see Fig. 3) given by:

fα(t) =


t ln t− t+ 1 α = 1
− ln t+ t− 1 α = 0
tα−α(t−1)−1

α(a−1) α 6= 0, α 6= 1

It is elementary to check that f ′′α(t) = tα−2, fα(1) = 0, f ′α(1) = 0; moreover
fα(t) is continuous in α, and f∗α(t) = f1−α(t). The corresponding f -divergences
are called power divergences or also common divergences:

Hα(Q,P ) := EP

[
fα

(
dQ

dP

)]
,

and satisfyHα(P,Q) = H1−α(Q,P ). Many common statistical (pseudo)distances
belong to this class: for example H1 is the relative entropy, H2 the chi square
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Fig. 3. Power divergences fα, with α = −1 (continuous line), 0 (dashed line), 0.5
(dotted line), 1 (dash-dotted line)

distance, H0 the reversed relative entropy and H 1
2

the Hellinger distance, that

satisfies the symmetry property H 1
2
(Q,P ) = H 1

2
(P,Q).

Minimal power divergence martingale measures are defined as follows:

Qα = arg min
Q∈M

Hα(Q,P ).

In the context of incomplete markets, minimal power divergences have been
considered in many papers; Jeanblanc et al. [21] considered the case of exponen-
tial Lévy processes, with α < 0 or α > 1; Henderson [18] and Henderson et al.
[19] considered the case of stochastic volatility models; Cawston and Vostrikova
[7] proved that in exponential Lévy models, among all minimal divergence mea-
sures, power divergences are the only that preserve the Lévy structure.
We now prove that in the one period setting minimal power divergence martin-
gale measures are ordered. We have the following

Theorem 1. Let Qα and Qβ as in the preceding definition, with α ≤ β; then
Qβ ≤cx Qα. This implies that option prices are decreasing in the parameter α.

Proof. The problem is 
min
ϕ
EP [fα(ϕ)]

EP [ϕST ] = S0e
rT

EP [ϕ] = 1

The Lagrangian is given by:

L(ϕ, λ, µ) = EP [fα(ϕ)]− λ(EP [ϕST ]− S0e
rT )− µ(EP [ϕ]− 1),
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and the first order conditions developed in [15] become simply: f ′α(ϕ?α) = λST + µ
EP [ϕ?αST ] = S0e

rT

EP [ϕ?α] = 1

Since in the power case

f ′α(t) =

{
ln t α = 1
tα−1−1
a−1 α 6= 1

the densities of the minimal divergence measures are of the form:

ϕ?α(ST ) =

{
exp(λST + µ) α = 1

[1 + (α− 1)(λST + µ)]
1

α−1 α 6= 1
(6)

where the parameters λ and µ are chosen in order to satisfy the constraints
EP [ϕ?α] = 1 and EP [ϕ?αST ] = S0e

rT . The elasticity is given by:

η?α(ST ) =
λST

1 + (α− 1)(λST + µ)
.

The elasticity ratio between two different minimal divergence martingale mea-
sures Qα and Qβ is given by:

rα,β(ST ) =
η?α(ST )

η?β(ST )
=
λα
λβ

1 + (β − 1)(λβST + µβ)

1 + (α− 1)(λαST + µα)
,

that is always a monotone function of ST ; from Proposition 4, item iv), it follows
that Qα and Qβ are comparable in the convex order. Since from (6) it is easy to
see that the lower α, the more convex is ϕ?α(S), from Proposition 6 we have the
thesis. 2

A numerical illustration is given in Fig. 4 and Fig. 5.

4 Multiperiod extension

The computation of MDMMs in discrete time models has been considered by
several authors: Gzyl [17] and Ssebugenyi [31] considered the case of the MEMP,
while Grandits [16] and Arai and Kawaguchi [2] considered p-optimal martingale
measures. We begin by introducing some standard notations. Let (Ω,F, Fn, P )
be a filtered probability space with F = {∅, Ω} and FN = F . The dynamics of
the riskless asset is Bk = Bk−1e

rk , with rk ∈ Fk−1; the dynamics of the risky
asset is Sk = eXkSk−1, with Xk ∈ Fk. The no arbitrage condition corresponds
to the requirement that

P (Xk > rk|Fk−1) > 0 and P (Xk < rk|Fk−1) > 0, for k = 1, ..., N,
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Fig. 4. Convex comparison between minimal power divergence martingale measures
with α=-1 (continuous line), α=0.5 (dashed line), α = 2 (dotted line). The convex
order is reversed with respect to the parameter α

Fig. 5. Comparison between call prices given by minimal power divergence martingale
measures α=-1 (continuous line), α=0.5 (dashed line), α = 2 (dotted line). Option
prices are decreasing with respect to the parameter α



Convex comparison of minimal divergence martingale measures 13

and is equivalent to the existence of an EMM for the discounted process.
The density process of any EMM is defined as

Zn := EP

[
dQ

dP
|Fn
]
,

and can always be written as a product of one period change of measures ϕk;
that is, we can always write:

Zn =

n∏
k=1

ϕk, with ϕk =
Zk
Zk−1

> 0 a.s. and EP [ϕk|Fk−1] = 1. (7)

We have that Q is a martingale measure for the discounted price process if and
only if:

EP [ϕke
Xk |Fk−1] = erk , for k = 1, ..., N

(see for example [30] for a general treatment of multiperiod discrete time models).
The computation of MDMMs in multiperiod models is not trivial and typi-

cally requires backward induction procedures. In particular, in general the den-
sity of the MDMM cannot be written as the product of one period divergence-
minimizing densities as in (7).

We illustrate this point by means of a simple two period trinomial example.
The price process is an additive random walk with dependent increments:

S1 − S0 =

 1 1/2
0 3/8
−1 1/8

, S2 − S1 =

{
Ũ if S1 = 1
U if S1 = −1 or 0

(8)

with U =

 1 1/3
0 1/3
−1 1/3

and Ũ
d
= S1 − S0

the corresponding tree is reported in Fig. 6. It is not difficult to check that the
distribution of the underlying under the minimal entropy martingale measure is
the following:

S1 − S0 =

 1 q1
0 1− 2q1
−1 q1

, S2 − S1 =

{
d
= U if S1 = 1
d
= U if S1 = −1 or 0

with U =

 1 q2
0 1− 2q2
−1 q2

, with q1 ' 0.2775 and q2 ' 0.2857.

Clearly, since q1 6= q2, this is not the product of one period entropy-minimizing
densities.

On the other hand, as was suggested in [17] and [14], it is very natural to
consider local MDMMs, defined by construcion as the product of one period
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Fig. 6. A two period trinomial example

divergence-minimizing densities. That is, a local MDMM is defined by means of
the density process:

Z̃n :=

n∏
k=1

ϕ̃k, (9)

where each ϕ̃k is the solution of the problem:
min
ϕ
EP [f(ϕk)|Fk−1]

EP [ϕk|Fk−1] = 1
EP [ϕke

Xk |Fk−1] = erk
(10)

In the preceding example the local MEMP would be given by:

S1 − S0 =

 1 q
0 1− 2q
−1 q

, S2 − S1 =

{
d
= U if S1 = 1
d
= U if S1 = −1 or 0

with U =

 1 q
0 1− 2q2
−1 q

, with q ' 0, 2857.

In [4] it was shown that convex comparison between one period changes of mea-
sure implies the convex comparison of their product; more precisely, the following
Lemma was proved:

Lemma 1. Let ϕ1 =
n∏
k=1

ϕ1
k and ϕ2 =

n∏
k=1

ϕ2
k, with ϕik satisfying ϕik > 0 a.s.,

EP [ϕik|Fk−1] = 1, EP [ϕike
Xk |Fk−1] = erk . If for each k we have that ϕ1

k ≤cx ϕ2
k,

then ϕ1 ≤cx ϕ2.
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This Lemma was applied to the convex comparison of the multiperiod Esscher
measure (that is local by construction) and the local MEMP. Similarly, we can
establish convex comparison between local power MDMMs:

Theorem 2. Let Qα and Qβ be local power MDMMs, defined by (9) and (10).
If α ≤ β, then Qβ ≤cx Qα.

As a final example, we compute local and global power MDMMs for α ranging
from 1 (the case of entropy) to 5, in the two period trinomial model (8). The
results are reported in Table 1 and show that indeed the local MDMMs are
decreasing in the convex order with respect to α, in accordance with Theorem
2; moreover, the lower part of the table suggests that a similar result could hold
also for the global MDMMs, but the proof is still a open problem.

Table 1. Convex comparison between local (upper part) and global (lower part) min-
imal power divergence martingale measures, for different values of α in the two period
trinomial model (8). Both families appear to be ordered in the convex order

Local MDMMs α = 1 α = 2 α = 3 α = 4 α = 5

S2 = 2 0.0816 0.0666 0.0570 0.0518 0.0488
S2 = 1 0.2653 0.2862 0.2988 0.3056 0.3093
S2 = 0 0.3197 0.3139 0.3108 0.3092 0.3085
S2 = −1 0.2381 0.2473 0.2537 0.2575 0.2597
S2 = −2 0.0952 0.0860 0.0796 0.0759 0.0737

Global MDMMs α = 1 α = 2 α = 3 α = 4 α = 5

S2 = 2 0.0793 0.0648 0.0563 0.0515 0.0487
S2 = 1 0.2673 0.2874 0.2993 0.3057 0.3094
S2 = 0 0.3201 0.3144 0.3110 0.3094 0.3086
S2 = −1 0.2408 0.2497 0.2548 0.2579 0.2598
S2 = −2 0.0925 0.0837 0.0785 0.0754 0.0735

5 Conclusions and directions for further research

We have seen that in the one period case it happens quite often that two dif-
ferent equivalent martingale measures Q1 and Q2 are comparable in the convex
order. In Propositions 4, 6 and 7 we have presented new sufficient conditions
for the convex ordering that generalize those already proved in [11] and [4]. In
particular, it seems that minimal power divergence martingale measures are al-
ways ordered (Theorem 1). This ordering partially extends to the multiperiod
case (Theorem 2), and reflects a similar result already found in the context of
stochastic volatility models (see [18], [19]). A natural question is if it is possible
to extend these result beyond the class of power divergences; another natural
question is if in the multiperiod case is possible to establish comparison result be-
tween global martingale measures; both issues are the subject of current research.
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Finally, I would like to thank three anonymous referees for their corrections and
suggestions, that have lead to an improvement of the paper.
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