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Abstract. We continue to study financial market models based on gen-
eralized telegraph processes with alternating velocities. The model is
supplied with jumps occurring at the times of velocity switchings. This
model is arbitrage-free and complete if the directions of jumps in stock
prices are in a certain correspondence with their velocity and with the be-
haviour of the interest rates. A risk-neutral measure and arbitrage-free
formulae for a standard call option are constructed. A new version of
convergence under suitable scaling to the Black-Scholes model is proved,
and the explicit limit is obtained. Next, we examine numerically the ex-
plicit formulae for call prices to obtain the behaviour of implied volatil-
ities. Moreover, this model has some features of models with memory.
The historical volatility of jump telegraph model is similar to historical
volatility of the moving average type model.
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1 Introduction

The famous Black-Scholes formula has well known shortages and it is rarely used
to price options. It is commonly accepted that Black-Scholes pricing formula
underprices deep-in-the-money and out-of-the-money options and it overprices
at-the-money options, see [15] and e.g. [16]. This observation provokes a growing
interest in the construction of more and more complicated stochastic volatility
models based on stochastic dynamics of the Black-Scholes implied volatility (see
a review of these activities e.g. in [4]). The volatility implied by the Black-Scholes
formula is used in these models as common language to explain how the option
should be priced. Usually the implied volatility as a function of moneyness K/S0

forms a so called “volatility smile”. On the other hand this “smile-consistent”
approach proposes the quantity sophistication instead of fundamental explana-
tion of difficulties. Moreover, models of this type increase Markov dimension of
the market.

To explain market’s movements we propose a rather new model based on
telegraph-like processes. This paper continues our previous research [20] of such
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a model. Suppose that the log-returns are driven by a telegraph process, i.e.
they move with pair of constant velocities alternating one to another at Poisson
times. To make the model more adequate and to avoid arbitrage opportunities
the log-return movement should be supplied with jumps occurring at times of
the tendency switchings.

As a basis for building the model in Section 2, we take a counting Poisson
process N = N(t), t ≥ 0 with alternating transition intensities λ± > 0. The
process σ(t) = (−1)N(t) (or σ(t) = −(−1)N(t)) with values ±1 displays a current
market state. Using σ(t), t ≥ 0, we define processes cσ(t) = c±, hσ(t) = h±, h± >

−1, rσ(t) = r±, r± ≥ 0. Processes Ts and Js are defined as Ts(t) =
∫ t

0
cσ(τ)dτ

and Js(t) =
∫ t

0
hσ(τ)dN(τ). The evolution of the risky asset S(t) is determined

by a stochastic exponential of the sum Ts + Js. The risk-free asset is given by
the usual exponential of the process Ts = Ts(t) =

∫ t

0
rσ(τ)dτ, t ≥ 0. Here and

below the subscript s indicates the starting value s = σ(0) = ±1 of the market’s
state σ(t).

In view of such trajectories, the market is set up as a continuous process that
evolves with velocity c+ or c−, changes the direction of movement from c± to
c∓ and exhibits jumps of size h± whenever velocity changes. The interest rate
in the market is stochastic with values r±.

The processes T±(t)+J±(t), t ≥ 0 are given by the pair of states (c±, λ±, h±).
They are called jump telegraph processes with states (c±, λ±, h±). This model is
regarded as jump telegraph market model.

In Section 2 we describe the model in detail. This section contains also the
explicit expressions for means and variances which are exploited to describe
historical volatility in Section 4. For the beginning all parameters are supposed
to be deterministic, which leads to completeness of the market. The case of
random jump values and random velocities creates incomplete market model
and it will be reported anywhere later.

Such a model looks attractive because of finite propagation velocity and the
intuitively clear comportment. Under respective scaling it converges to Black-
Scholes model. Section 3 is concerned with this convergence and the definition of
volatility in jump telegraph model. It contains a new version of scaling theorem
(cf. [20] and [21]), and a new fundamental and natural explanation of volatility.
It permits us to define the volatility of the jump telegraph model depending
on the velocities c±, the jumps values h± and the switching intensities λ±.
Further, (Section 4), we consider a historical volatility as HV(t) =

√
VarS(t)/t,

and then an implied volatility as IV(t) =
√

V±(µ, t)/t, where V± are implied
variances of jump telegraph model with respect to the Black-Scholes dynamics.
The implied volatility IV(t) with various values of log-moneyness µ forms the so
called volatility smile. Volatility smiles of various shapes are presented in Section
5.

Telegraph processes have been studied before in different probabilistic as-
pects (see, for instance, Goldstein [9] (1951), Kac [11], [12] (1974) and Zacks [22]
(2004)). These processes have been exploited for stochastic volatility modelling
(Di Masi et al. [7] (1994)) as well as for obtaining a “telegraph analog” of the
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Black-Scholes model (Di Crescenzo and Pellerey [6] (2002)). In contrast with the
paper by Di Crescenzo and Pellerey, we use more complicated and delicate con-
struction of such a model to avoid arbitrage and to develop an adequate option
pricing theory in this framework. Recently telegraph processes was applied to
actuarial problems [14].

Parameters of telegraph market model was calibrated in the working paper
of De Gregorio and Iacus [5]. This calculations are based on weekly closings
of the Dow-Jones industrial average July 1971 - Aug 1974 and returns of IBM
stock closings. In Section 5 we use these calibrated data to estimate the implied
volatility (see Table 3 and Figure 4).

2 Jump telegraph processes with alternating intensities

Let (Ω, F , P) be a probability space, λ± be positive numbers. First, we consider
two counting Poisson processes N+ = N+(t), N− = N−(t), t ≥ 0 with values
{0, 1, 2, . . .} and alternating intensities λ±1 := λ±, i.e. for n = 0, 1, 2, . . . as
∆t → 0

P{N−(t+∆t) = 2n+ 2 | N−(t) = 2n+ 1} = λ+∆t+ o(∆t),

P{N+(t+∆t) = 2n+ 2 | N+(t) = 2n+ 1} = λ−∆t+ o(∆t),

P{N−(t+∆t) = 2n+ 1 | N−(t) = 2n} = λ−∆t+ o(∆t),

P{N+(t+∆t) = 2n+ 1 | N+(t) = 2n} = λ+∆t+ o(∆t).

Further we will consider all stochastic processes subscribed by + or − to be
adopted to filtration F = (F+

t )t≥0 or F = (F−
t )t≥0 generated by N+ = N+(t)

and N− = N−(t) respectively.
Processes σ+(t) = (−1)N+(t) and σ−(t) = −(−1)N−(t) indicate a current

state: if 0 < τ1 < τ2 < τ3 < . . . is a Poisson flow, then interarrival times
τn+1 − τn, n = 0, 1, 2, . . . are independent and exponentially distributed with
parameter λσ±(τn−). Subscripts ± here respect to the initial state of the medium.

Let c−, c+ and h−, h+ be real numbers, h± > −1, c− < c+. Telegraph
processes T− = T−(t), T+ = T+(t), t ≥ 0 are defined as follows:

T±(t) =

t∫
0

cσ±(t′)dt
′.

We define also right continuous pure jump processes J− = J−(t), J+ = J+(t),
t ≥ 0, which are driven by the same Poisson processes:

J±(t) =

t∫
0

hσ±(t′)dN±(t
′) =

N±(t)∑
j=1

hσ±(τj−).
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Processes X− = T− + J− and X+ = T+ + J+ are referred to as jump telegraph
processes with parameters < c±, λ±, h± >.

The following theorem could be interpreted as a version of the Doob-Meyer
decomposition for telegraph processes.

Theorem 1. Jump telegraph processes X− = X−(t) and X+ = X+(t), t ≥ 0
with parameters < c±, h±, λ± > are martingales if and only if c+ = −λ+h+

and c− = −λ−h−.

Proof. See [20], Theorem 1.

Next, we study the properties of telegraph processes under a change of mea-
sure. Let T ∗

s be the telegraph process with the states (c∗±, λ±), and J∗
s =

−
Ns(t)∑
j=1

c∗σ(τj−)/λσ(τj−) be the jump process with jump values h∗
± = −c∗±/λ± >

−1. Consider a probability measure P∗
s with the following local density (with

respect to Ps):

Zs(t) =
dP∗

s

dPs
|t= Et(T ∗

s + J∗
s ), 0 ≤ t ≤ T, s = ±. (1)

Here Et(·) denotes stochastic exponential.
Using properties of stochastic exponentials, we obtain

Zs(t) = eT
∗
s (t)κ∗

s(t), (2)

where κ∗
s(t) =

∏
τ≤t

(1 +∆J∗
s (τ)) with ∆J∗

s (τ) = J∗
s (τ)− J∗

s (τ−).

The process κ∗
s = κ∗

s(t), t ≥ 0 can be represented as κ∗
s(t) = κ∗

Ns(t),s
. Here

the sequence κ∗
n,s is defined as follows:

κ∗
n,s = κ∗

n−1,−s(1 + h∗
s), n ≥ 1, κ∗

0,s ≡ 1. (3)

It means that if n = 2k,

κ∗
n,s = (1 + h∗

s)
k(1 + h∗

−s)
k,

and if n = 2k + 1,

κ∗
n,s = (1 + h∗

s)
k+1(1 + h∗

−s)
k.

Theorem 2 (Girsanov theorem). Under the probability measure P∗
s,

– process Ns = Ns(t), t ≥ 0 is a Poisson process with intensities λ∗
− = λ− −

c∗− = λ−(1 + h∗
−) and λ∗

+ = λ+ − c∗+ = λ+(1 + h∗
+).

– process Ts = Ts(t), t ≥ 0 is a telegraph process with states (c−, λ
∗
−) and

(c+, λ
∗
+).

Probability measure P∗
s becomes the martingale measure for jump telegraph

process Ts+Js, if it is constructed using parameters c∗− = λ−+
c−
h−

, c∗+ = λ++
c+
h+

,

h∗
− = −1− c−

λ−h−
and h∗

+ = −1− c+
λ+h+

.
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Proof. See [20], Theorem 2.

We obtain distributions of jump telegraph processes X±(t) in terms of gen-

eralized probability densities p
(n)
± = p

(n)
± (x, t) and p± = p±(x, t), which are

defined as

P(Xs(t) ∈ ∆,Ns(t)) =

∫
∆

p(n)s (x, t)dx, P(Xs(t) ∈ ∆) =

∫
∆

ps(x, t)dx, (4)

s = ±

for any borelian set ∆; p±(x, t) =
∞∑

n=0
p
(n)
± (x, t), x ∈ (−∞,∞), t ≥ 0.

Theorem 3. Let X±(t), t ≥ 0 be a pair of jump telegraph processes with pa-

rameters < c±, h±, λ± >. Their probability densities p
(n)
± solve the system

∂p
(n)
+

∂t + c+
∂p

(n)
+

∂x = −λ+[p
(n)
+ (x, t)− p

(n−1)
− (x− h+, t)],

∂p
(n)
−
∂t + c−

∂p
(n)
−

∂x = −λ−[p
(n)
− (x, t)− p

(n−1)
+ (x− h−, t)]

(5)

with zero initial conditions p
(n)
± |t=0= 0, n ≥ 1 and p

(0)
± (x, t) = e−λ±tδ(x− c±t).

Proof. See [19], equation (2.12).

System (5) has the following solution (see e.g. [21]), p
(n)
± (x, t) = g

(n)
± (x −

j
(n)
± , t), where

j
(n)
± =

{
k(h+ + h−), n = 2k,

k(h+ + h−) + h±, n = 2k + 1
, k = 0, 1, 2, . . .

and

g
(n)
+ (x, t) = e−µt−νxλ

n−[n/2]
+ λ

[n/2]
−

(c+ − c−)n
· (c+t− x)n−[n/2]−1(x− c−t)

[n/2]

(n− [n/2]− 1)! [n/2]!
1{c−t<x<c+t},

g
(n)
− (x, t) = e−µt−νxλ

[n/2]
+ λ

n−[n/2]
−

(c+ − c−)n
· (c+t− x)[n/2](x− c−t)

n−[n/2]−1

(n− [n/2]− 1)! [n/2]!
1{c−t<x<c+t},

n ≥ 1. Here

ν =
λ+ − λ−

c+ − c−
, µ = λ± − νc± =

c+λ− − c−λ+

c+ − c−
.

Next, we have
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Fig. 1. Probability densities of telegraph process T±(t) (absolutely continuous part)
with values t = 1, c± = ±4, h± = ∓0.2 and with λ± = 5 or λ± = 20

p±(x, t) =

∞∑
n=0

p
(n)
± (x, t) =

∞∑
n=0

g
(n)
± (x− j

(n)
± , t), (6)

and functions p± satisfy the following system (see equation (2.9) in [21]):
∂p+

∂t + c+
∂p+

∂x = −λ+[p+(x, t)− p−(x− h+, t)],

∂p−
∂t + c−

∂p−
∂x = −λ−[p−(x, t)− p+(x− h−, t)]

(7)

with the initial condition p±(x, 0) = δ(x).

The densities p± with certain c±, h± and different λ± are presented in Fig.1.

Representation (6) of the telegraph process densities is adapted to the follow-
ing rule of measure change. If the intensities λ± of the driving Poisson process
are changed to λ̄±, then the densities of telegraph process will take the form

p̄±(x, t) = e−(µ̄−µ)t−(ν̄−ν)x
∞∑

n=0

p
(n)
± × κ

(n)
± , (8)

where κ
(n)
+ =

(
λ̄+/λ+

)n−[n/2] (
λ̄−/λ−

)[n/2]
, κ

(n)
− =

(
λ̄+/λ+

)[n/2] (
λ̄−/λ−

)n−[n/2]
,

ν̄ = λ̄+−λ̄−
c+−c−

and µ̄ = c+λ̄−−c−λ̄+

c+−c−
.

Applying (7) one can easy obtain the following system for expectations (see
[21], Corollary 2.6).
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Lemma 1. Let f = f(x) and µ± = µ±(t), t ≥ 0 be smooth deterministic
functions, X± be jump telegraph processes with parameters < c±, h±, λ± >.
Then functions

u± = u±(x, t) = Ef(x− µ±(t) +X±(t))

form a solution of the system{
∂u+

∂t − (c+ − µ̇+)
∂u+

∂x = −λ+ [u+(x, t)− u−(x+ β+(t), t)]
∂u−
∂t − (c− − µ̇−)

∂u−
∂x = −λ− [u−(x, t)− u+(x+ β−(t), t)]

(9)

with β+(t) = h+ − (µ+(t)− µ−(t)) , β−(t) = h− − (µ−(t)− µ+(t)).

Here µ̇± = dµ±
dt .

From (9) we deduce formulae for mean value and variance of a jump telegraph
process

m±(t) = E(X±(t)), s±(t) = Var(X±(t)).

Indeed, with the choices f(x) = x, µ± = 0 and f(x) = x2, µ±(t) = m±(t) we get
respectively

dm

dt
= Λm+ v1 (10)

and

ds

dt
= Λs+ v2. (11)

Here

Λ =

[
−λ+ λ+

λ− −λ−

]
, m =

[
m+(t)
m−(t)

]
, s =

[
s+(t)
s−(t)

]
,

v1 =

[
c+ + λ+h+

c− + λ−h−

]
and v2 =

[
λ+(h+ +m− −m+)

2

λ−(h− +m+ −m−)
2

]
.

System (10)-(11) can be explicitly resolved:

m(t) =
t

2λ

(
C1

[
1
1

]
+ C2Φλ(t)

[
λ+

−λ−

])
, Φλ(t) =

1− e−2λt

2λt
, (12)

where C1 = λ−(c+ + λ+h+) + λ+(c− + λ−h−), C2 = c+ − c− + λ+h+ − λ−h−.
Then m+ −m− = C2

2λ (1− e−2λt) = C2tΦλ(t) and

s(t) =

t∫
0

e(t−τ)Λv2(τ)dτ (13)

with v2(τ) =

[
λ+(h+ − C2τΦλ(τ))

2

λ−(h− + C2τΦλ(τ))
2

]
.
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With this in hand we can easy find the limits of s±(t)/t as t → 0 and as
t → ∞:

lim
t→0

s±(t)/t = λ±h
2
±,

lim
t→∞

s±(t)
t = λ+λ−

(λ++λ−)3

[
(λ−(h+ + h−) + c− − c+)

2 + (λ+(h+ + h−) + c+ − c−)
2
]
.

(14)
We shall use these limits in Section 4 to evaluate the comportment of historical
volatilities.

In symmetric case λ+ = λ− := λ the formulae for solutions of (10)-(11) can be
simplified as follows. Setting A = (c++c−)/2, a = (c+−c−)/2, B = (h++h−)/2,
b = (h+ − h−)/2, γ+ = −2a(a/λ+ h+), γ− = −2a(a/λ− h−) we have

m±(t) = [A+ λB ± (a+ λb)Φλ(t)] t, (15)

s±(t) =
[
a2/λ+ λB2 + (a+ λb)2Φ2λ(t)/λ+ γ±Φλ(t)± 2B(a+ λb)e−2λt

]
t.
(16)

These formulae are presented in [21] (see Theorem 2.7, formulae (2.25)-
(2.26)).

3 Jump telegraph market model and diffusion rescaling

We consider a market with one stock and a bond.
The stock price S(t) = S±(t), t ≥ 0 follows the equation

dS(t) = S(t−)dX(t), S(0) = S0, σ(0) = ±1, (17)

where X(t) = X±(t) = T±(t) + J±(t), t ≥ 0 is the jump telegraph process
with parameters < c±, h±, λ± >, σ(0) = ±1 indicates initial market trend.
Integrating we have

S(t) = S0Et(X) = S0 exp(T (t))κ(t), κ(t) =

N(t)∏
n=0

(1 + hσ(τj−)). (18)

The bond price is

B(t) = exp(T (t)), (19)

where T = T±(t), t ≥ 0 be the telegraph process with velocities r± ≥ 0, which
is driven by the same inhomogeneous Poisson process:

T (t) =

t∫
0

rσ±(t′)dt
′.
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Model (18)-(19) is named jump telegraph market model.
The probability measure P∗ is the martingale measure for pricing process

S̃(t) ≡ B(t)−1S(t). Process S̃(t) = S0 exp(T (t) − T (t))κ(t), t ≥ 0 is again
the stochastic exponent of jump telegraph process with parameters < c± −
r±, h±, λ± >. So with no loss of generality we assume r± = 0. Thus, the
stock price process S(t) is a nonnegative P∗-martingale. By Theorem 1 under
measure P∗ the driving Poisson process N has intensities λ∗

− = −c−/h− and
λ∗
+ = −c+/h+, and by Theorem 2 change of measure is defined by c∗± = λ±−λ∗

±.
It is well known that under suitable scaling the telegraph process T =

T (t), t ≥ 0 converges to a Brownian motion: if c+ → +∞, c− → −∞, λ± → ∞
such that c+/

√
λ+ → σ, c−/

√
λ− → −σ, then the telegraph process T (t), t ≥ 0

converges in distribution to σw(t), t ≥ 0, where w denotes the standard Brown-
ian motion. This convergence was first proved in [11]; see more details and some
extensions in [18].

Thus, it is reasonable to obtain a similar rescaling result for jump telegraph
model (18). To separate the drift from the diffusion component we consider
the telegraph processes T̃±(t), t ≥ 0, driven by the same Poisson process as
T± and with velocities a+ and −a−, where a+ = c+−c−√

λ++
√

λ−

√
λ+ and a− =

c+−c−√
λ++

√
λ−

√
λ−. Notice that a+ + a− = c+ − c− and a±

a++a−
=

√
λ±√

λ++
√

λ−
.

It is easy to see that

T+(t)− T̃+(t) = T−(t)− T̃−(t) = At, (20)

where A =
c+
√

λ−+c−
√

λ+√
λ++

√
λ−

= c+a−+c−a+

c+−c−
.

Further we assume λ± → +∞, c+ − c− → +∞ and

c+ − c−√
λ+ +

√
λ−

→ σ,

√
λ+

λ−
→ γ (21)

for some σ, γ ≥ 0.
To control jump and drift components we suppose h± → 0 such that for

some α±, δ ∈ (−∞,∞) √
λ±h± → α± (22)

and

∆ := A+

√
λ+λ−√

λ+ +
√
λ−

(
√
λ+h+ +

√
λ−h−) → δ. (23)

Notice that ∆ =

√
λ+√

λ++
√

λ−
(c− + λ−h−) +

√
λ−√

λ++
√

λ−
(c+ + λ+h+) and set β2 =

α2
++γα2

−
1+γ .

The following theorem generalizes previous author’s results (see Theorem 3.3
[21] and Theorem 4 [20]). The scaling property (24) can be applied to interpret
a volatility in jump telegraph model (18).
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Theorem 4. Under scaling (21)-(23) jump telegraph model (18) converges in
distribution to the Black-Scholes model:

S(t)
D→ S0 exp{vw(t) + (δ − β2/2)t}, (24)

where v =

√
(σ + (γα+ − α−)/(1 + γ))

2
+ β2.

Remark 1. Under the martingale measure P∗ transition intensities take a form

−c±/h±. Thus the drift vanishes, ∆ =

√
λ+√

λ++
√

λ−
(c−+λ−h−)+

√
λ−√

λ++
√

λ−
(c++

λ+h+) = 0. Moreover, in this case σ = lim c+−c−√
λ++

√
λ−

= − lim λ+h+−λ−h−√
λ++

√
λ−

=

−γα+−α−
1+γ . The limiting volatility v in this case coincides with β: v = β =√

α2
++γα2

−
1+γ .

Proof. Let f±(z, t) = EEt(zX±) = EezT±(t)κ±(t)
z be the moment-generating

function. We prove here the convergence

f±(z, t) → exp{(δ − β2/2)zt+ v2z2t/2}, (25)

which is sufficient for the convergence of pointwise distributions in (24).

Using (20) and the rule (8) we note that

f±(z, t) = eAztEezT̃±(t)κ±(t)
z = eAzt+(µ̄−µ)t

∞∫
−∞

e(z+ν̄−ν)xp̄±(x, t)dx.

Here p̄± are (generalized) probability densities of the telegraph processes T̄±
with velocities a+ and −a−, which are controlled by the Poisson process with
alternating intensities λ̄± = λ±(1+h±)

z, furthermore µ̄ = (a−λ̄++a+λ̄−)/(a++
a−), µ = (a−λ+ + a+λ−)/(a+ + a−) and ν = (λ̄+ − λ̄−)/(a+ + a−), ν =
(λ+ − λ−)/(a+ + a−).

Since under the scaling (21) a+/
√
λ+, a−/

√
λ− → σ and thus the processes

T̄+(t), t ≥ 0 and T̄−(t), t ≥ 0 converge to σw(t), t ≥ 0, then

p̄±(x, t) → 1

σ
√
2πt

e−x2/(2tσ2).

Further notice that

ν̄−ν =
λ+[(1 + h+)

z − 1]− λ−[(1 + h−)
z − 1]

a+ + a−
∼ z·λ+h+ − λ−h−

a+ + a−
→ z·γα+ − α−

σ(1 + γ)
.

(26)

Moreover
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µ̄− µ =
a+(λ̄− − λ−) + a−(λ̄+ − λ+)

a+ + a−

=
a+λ−

a+ + a−
[(1 + h−)

z − 1] +
a−λ+

a+ + a−
[(1 + h+)

z − 1]

=
z
√

λ+λ−√
λ+ +

√
λ−

[√
λ+h+ +

√
λ−h−

]
(27)

+
z2 − z

2

[ √
λ−√

λ+ +
√
λ−

λ+h
2
+ +

√
λ+√

λ+ +
√
λ−

λ−h
2
−

]
.

Applying (21)-(23) and summarizing the above statements, we obtain the
convergence (25). 2

Remark 2. Condition (23) in this theorem means that the total drift ∆ ≡ A +√
λ+λ−√

λ++
√

λ−
(
√

λ+h+ +
√
λ−h−) is asymptotically finite. Here A = a−c++a+c−

c+−c−
is

generated by the velocities of the telegraph process, and the summand√
λ+λ−√

λ++
√

λ−
(
√

λ+h+ +
√
λ−h−) represents the drift component (possibly with

infinite asymptotics) that is motivated only by jumps. If the limits of λ±h± are
finite, then A → const, and α+ = α− = 0. In this case the volatility of limit is
v = σ = lim a±/

√
λ±.

Hence in model (18)-(19) value a+/
√
λ+ = a−/

√
λ− = (c+ − c−)/(

√
λ+ +√

λ−) can be interpreted as “telegraph” component of volatility, and
√
λ±h±

are volatility components engendered by jumps.

In general, the limiting volatility v =

√
(σ + (γα+ − α−)/(1 + γ))

2
+ β2 de-

pends both on “telegraph” and jump components. So it is natural to define
volatility in jump telegraph model as (see (26)-(27))

vol =

√√√√( c+ − c−√
λ+ +

√
λ−

)2(
1 +

λ+h+ − λ−h−

c+ − c−

)2

+

√
λ−λ+h2

+ +
√
λ+λ−h2

−√
λ+ +

√
λ−

.

(28)

4 Historical and implied volatilities in the jump telegraph
model

4.1 Historical volatility

Historical volatility is defined as

HV(t) =

√
Var{logS(t+ τ)/S(τ)}

t
. (29)
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For classical Black-Scholes model logS(t + τ)/S(τ)
D
= at + σw(t) (where w =

w(t), t ≥ 0 is a standard Brownian motion), the historical volatility is constant:
HVBS(t) ≡ σ.

In a moving-average type model, which is described by (see [2])

logS(t)/S(0) = at+ σw(t)− σ

t∫
0

dτ

τ∫
−∞

pe−(q+p)(τ−u)dw(u),

(σ, q, q + p > 0) the historical volatility has a more tricky structure

HV =
σ

2λ

√
q2 + p(2q + p)Φλ(t) (30)

with 2λ = q + p and Φλ(t) =
1−e−2λt

2λt . Recently this type of models have been
applied to capture memory effects of the market [8], [10].

The historical volatility of jump telegraph model (18) takes the form

HV(t) =

√√√√√1

t

t∫
0

e(t−τ)Λv(τ)dτ , (31)

where v =

[
v+(τ)
v−(τ)

]
is defined as in (13), but with ln(1 + h±) instead of h±:

v+(τ) = λ+ [ln(1 + h+)− CτΦλ(τ)]
2
, v−(τ) = λ− [ln(1 + h−) + CτΦλ(τ)]

2
.

Here as usual, subscripts ± denote the initial state of the market, C = c+−c−+

λ+ ln(1 + h+)− λ− ln(1 + h−) and Φλ(τ) =
1−e−(λ++λ−)τ

(λ++λ−)τ .

Historical volatility in jump telegraph model has the following very natural
limiting behaviour (see (14)):

lim
t→0

HV±(t) =
√
λ± ln(1 + h±),

lim
t→∞

HV±(t) =

√
λ+λ−

2λ3
[(λ−B − a)2 + (λ+B + a)2]

(B = 1
2 ln(1 + h+)(1 + h−), a = (a+ + a−)/2; see (14)). These limits look

reasonable: the limit at 0 is engendered by jumps only, the limit at ∞ contains
both “velocity” component and a long term influence of jumps.

Using (16) and (29), in the symmetric case λ+ = λ− = λ formula (31) takes
the form similar to (30)

HV±(t) =
√
a2/λ+ λB2 + (a+ λb)2Φ2λ(t)/λ+ γ±Φλ(t)± 2B(a+ λb)e−2λt.

The limits of historical volatility under a standard diffusion scaling (see
Theorem 4) are more complicated. Nevertheless, in the symmetric case λ+ =
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λ− = λ, we have under the scaling conditions λ, a → ∞, h± → 0, a2/λ →
σ2,

√
λh± → α± that the historical volatility HV±(t) defined by (31) converges

to
√
σ2 + (α+ + α−)2/4.

Notice, that under the martingale measure P∗, we have λ = −c±/h±, σ =
(−α+ + α−)/2, and the diffusion limit of historical volatility equals to v =√

(α2
+ + α2

−)/2, which coincides with the volatility expression in Remark 1.

4.2 Implied volatility

Define the Black-Scholes call price function f(µ, v), µ = logK by

f(µ, v) =


F
(

−µ√
v
+

√
v
2

)
− eµF

(
−µ√
v
−

√
v
2

)
, if v > 0,

(1− eµ)+, if v = 0.

The processes V±(µ, t), t ≥ 0, µ ∈ R defined by the equation

E
[
(S(t+ τ)/S(τ)− eµ)+|Fτ

]
= f(µ, Vσ(τ)(µ, t)) (32)

are referred to as implied variance processes.
The implied volatilities IV±(µ, t) are

IV±(µ, t) =

√
V±(µ, t)

t
. (33)

The LHS of (32) is defined exactly by following. In the framework of this model
option pricing formulae and hedging strategies are completely constructed (see
[20]).

E
[
(S(t+ τ)/S(τ)− eµ)+|Fτ

]
= us(µ, t; λ̄±)− eµus(µ, t; λ∗

±), s = σ(τ),
(34)

where λ̄± = λ∗
±(1 + h±), λ

∗
± = −c±/h± > 0. Functions u± can be expressed as

us(µ, t; λ±) =

∞∑
n=0

u(n)
s (µ− b(n)s , t), s = ±,

where b
(n)
± = lnκn =

n∑
j=0

ln(1 + hσ±(τj−)) are drift parameters engendered by

jumps. Summands u
(n)
± of this sum has the following structure: for n ≥ 1

u
(n)
± (y, t) =


0, y > c+t

w
(n)
± (p, q), c−t ≤ y ≤ c+t,

ρ
(n)
± (t), y < c−t

p =
c+t− y

c+ − c−
, q =

y − c−t

c+ − c−
, (35)
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and u
(0)
+ (y, t) =

{
0, if p < 0

e−λ+t, if p ≥ 0
, u

(0)
− (y, t) =

{
e−λ−t, if q < 0

0, if q ≥ 0
.

Functions ρ
(n)
± in (35) have a form

ρ
(n)
± (t) = e−λ−tΛ

(n)
± P

(n)
± (t). (36)

Here Λ
(n)
+ = (λ+)

[(n+1)/2](λ−)
[n/2], Λ

(n)
− = (λ−)

[(n+1)/2](λ+)
[n/2] and

P
(n)
± (t) =

tn

n!
· 1F1(m

(±)
n + 1; n+ 1; −δt), m(+)

n = [n/2] , m(−)
n = [(n− 1)/2] ,

δ = λ+ − λ−. Here we exploit a hypergeometric function 1F1(α; β; z) which is
defined as

1F1(α; β; z) = 1 +
∞∑
k=1

α(α+ 1) . . . (α+ k − 1)

k!β(β + 1) . . . (β + k − 1)
zk = 1 +

∞∑
k=1

(α)k
k!(β)k

zk.

(see Abramowitz and Stegun [1]). Notice that P
(2n+1)
+ ≡ P

(2n+1)
− := P (2n+1), n =

0, 1, 2, . . .

Moreover w
(n)
± = e−λ+q−λ−pΛ

(n)
± v

(n)
± , p, q > 0, where v

(1)
± = P (1)(p) =

(1− e−δp)/δ, and

v
(2n)
+ =v

(2n)
+ (p, q)=P

(2n)
+ (p)+qP (2n−1)(p)+

n∑
k=2

qk

k!

k−2∑
j=0

δk−j−2βk−1,jP
(2n−j−2)
− (p),

v
(2n)
− = v

(2n)
− (p, q) = P

(2n)
− (p) +

n−1∑
k=1

qk

k!

k∑
j=0

δk−jβk+1,jP
(2n−j)
− (p),

v
(2n+1)
± = v

(2n+1)
± (p, q) = P (2n+1)(p) +

n∑
k=1

qk

k!

k−1∑
j=0

δk−j−1βk,jP
(2n−j)
− (p),

(37)

Here the coefficients βk,j , j < k are defined as follows: βk,0 = βk,1 = βk,k−2 =
βk,k−1 = 1,

βk,j =
(k − j)[j/2]

[j/2]!
.

Remark 3. In the symmetric case λ+ = λ− = λ we have P
(n)
± (t) = tn

n! and

functions u
(n)
± can be simplified as follows

u
(n)
± (y, t) = e−λtλ

n

n!


0, if p < 0
m(±)

n∑
k=0

(
n

k

)
pn−kqk if p, q > 0

tn, if q < 0

The detailed proof of (34)-(37) see in [20].
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5 Numerical results

We performed the numerical valuation of the jump telegraph volatility (28) and
the historical volatility (31), which are compared with the implied volatilities
(33) with respect to different moneyness and to the initial market states. The
implied volatilities are calculated by the explicit formulae (33)-(37). First, we
consider the symmetric case: λ± = 10, c± = ±1 and h± = ∓0.1. In Figure 2 we
plot implied volatilities of this simple case. Table 1 lists call prices and implied
volatilities of this volatility smile numerically. Notice that these frowned smiles
of implied volatilities IV− and IV+ intersect at K/S0 ≈ 1.17.

Table 1. Symmetric smile, t = 1, S0 = 100, λ± = 10, h± = ∓0.1, c± = ±1

K 40 70 100 117 130 160 190 220 250 280

c− 60.0013 31.6774 12.7370 6.9036 4.1565 1.1433 0.2632 0.0478 0.0058 0.0002
c+ 60.0026 31.7257 12.7680 6.9039 4.1382 1.1128 0.2430 0.0390 0.0032 0.0

IV− 0.2670 0.3147 0.3206 0.3200 0.3186 0.3128 0.3045 0.2935 0.2787 0.2545
IV+ 0.2811 0.3175 0.3214 0.3200 0.3180 0.3109 0.3010 0.2875 0.2671 0.0
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Fig. 2. Symmetric smile, t = 1, S0 = 100, λ± = 10, h± = ∓0.1, c± = ±1, HV± =
0.3162, jump telegraph volatility=0.3162

Table 2 and Figure 3 show the implied volatility picture for skewed move-
ment, when the market prices have a drift: both velocities are positive, and to
avoid an arbitrage we suppose jump values to be negative. This figure has un-
stable oscillations for deep-out-of-the-money options. Moreover, only in this case



108 Nikita Ratanov

historical and jump telegraph volatilities are less then implied volatilities values
for at-the-money options.

Table 2. Skewed smile, t = 1, S0 = 100, λ± = 10, h− = −0.03, h+ = −0.19, c− =
0.3, c+ = 1.9

K 50 100 150 200 250 300 350 400 450 500

c− 50.8133 17.6956 5.5624 1.8243 0.6350 0.2325 0.0882 0.0347 0.0127 0.0053
c+ 50.9762 18.5944 6.3367 2.2640 0.8586 0.3454 0.1413 0.0621 0.0279 0.0099

IV− 0.4475 0.4473 0.4539 0.4590 0.4620 0.4632 0.4630 0.4624 0.4577 0.4565
IV+ 0.4662 0.4704 0.4776 0.4827 0.4856 0.4875 0.4868 0.4873 0.4867 0.4766
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Fig. 3. Skewed smile, t = 1, S0 = 100, λ± = 10, h− = −0.03, h+ = −0.19, c− =
0.3, c+ = 1.9, HV− = 0.4198,HV+ = 0.4402; jump telegraph volatility=0.4301

Finally, we calculate exactly the case which was considered in the work of
A. De Gregorio and S.M. Iacus [5]. In this paper values of the parameters was
statistically estimated. The numerical work are based on weekly closings of the
Dow-Jones industrial average July 1971 - Aug 1974. We admit the values of
alternating intensities λ± and alternating market trends c±, proposed by [5].
Assuming these parameters have respect to martingale measure we calibrate
jump values as h± = −c±/λ±.

The model was taken asymmetric with λ− = 48.53, λ+ = 34.61, h− =
−0.0126, h+ = −0.0358, c− = 0.61, c+ = 1.24. It respects to simulations of
a preferably bullish market with small jump corrections. The main feature of
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this market is in the redundancy of small jumps. The calibrated martingale
distribution is strongly asymmetric.

The behaviour of implied volatility in the jump-telegraph model for these
data surprisingly resembles the calibration results for stochastic volatility models
of the Ornstein-Uhlenbeck type (see [17], fig. 5.1, where implied volatilities of
OU-stochastic volatility model was depicted) and for jump-diffusion models (see
Table 2 of [3] which contains the implied volatilities calibrated with respect to
jump-diffusion model. All calculations there are prepared considering a data set
of European call options on S&P 500 index).

Figure 5 depicts an implied volatility surface with respect to strike prices and
maturity times.

Table 3. Dow-Jones smile, t = 1, S0 = 100, λ− = 48.53, λ+ = 34.61, h− =
−0.0126, h+ = −0.0358, c− = 0.61, c+ = 1.24

K 50 70 100 130 160 190 220 250

c− 50.0002 30.1167 6.8313 0.4913 0.0146 0.0002 0.0000 0.0000
c+ 50.0002 30.1215 6.8838 0.5117 0.0162 0.0003 0.0000 0.0000

IV− 0.1809 0.1762 0.1714 0.1684 0.1663 0.1645 0.1628 0.1608
IV+ 0.1819 0.1773 0.1728 0.1699 0.1679 0.1662 0.1646 0.1629
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Fig. 4. Dow-Jones smile, t = 1, S0 = 100, λ− = 48.53, λ+ = 34.61, h− = −0.0126, h+ =
−0.0358, c− = 0.61, c+ = 1.24, HV− = 0.1630,HV+ = 0.1642; jump telegraph volatil-
ity=0.1661
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Fig. 5. Skewed smile, S0 = 100, λ± = 10, h− = −0.03, h+ = −0.19, c− = 0.3, c+ = 1.9
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