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1 Introduction

The measure of risk plays a central role in the theory and practice of finance. The
most used version by professional remains today the so-called Simple Volatility.
However, following for instance Barndorff-Nielsen and Shephard [8], or Andersen
et al. [6], volatility should be viewed as a latent factor (namely, the quadratic
variation affecting the Brownian motion in some representations, for instance)
that can only be estimated using its signature on market prices. It is only when
the process is known (and simulated), as in Andersen and Bollerslev ([3] and
[4]), that we know what the true volatility is. As shown by Barndorff-Nielsen
and Shephard [7], when the underlying process is more sophisticated, or when
observed prices suffer from market microstructure distortion effects (see [11]),
the results are less clear.

The Realized Volatility is considered, since its first use (see [4]), as the best
estimator for the latent factor of risk. The daily volatility obtained from transac-
tion data is shown to be accurate when controlling for a microstructure effect and
thus empirically supports the Clark’s Mixture of Distribution Hypothesis ([13]).
Among the high-frequency estimators, the one using all the available transac-
tions performs better than the Realized Volatilities that use a lower sampling
rate (see [9]). Oomen [31] empirically also shows that estimating the volatility
in business-time (transaction time) is more efficient than using the traditional
calendar-time, as it samples the process when it is most informative. Ait-Sahalia
et al. [1] argue that the most precise estimator, so far, is the mean of the Realized
Volatilities chosen at the optimal frequency but measured at different phases.

However, when high-frequency data are unavailable, the best estimations of
the unobservable risk factor are obtained through the Range-based (or Extreme
Value) estimators. The price range, defined as the difference between the highest
and lowest market prices over a fixed sampling interval, is known for a long
time as a volatility estimator. Starting with Parkinson [32], there is a wealth of
literature! devoted to refinements of this measure (using various assumptions
about the underlying process).

The aim of the present article then is to study the main properties of low
and high-frequency measures of volatility, in order to find if there are glaring dis-
crepancies between the empirical evidence and the usual assumptions that the
distribution of volatility is Gaussian. We first recall definitions and properties of
six main estimates of volatility, based on daily and intra-day data. We then com-
pute them on the French CAC40 index over a ten-year high frequency sample.
We secondly study their distributional properties by testing their Goodness-of-
Fit against the Gaussian hypothesis. We thirdly focus on extreme volatilities.
We fit a General Extreme Value distribution to the right-hand tail of daily risk
measures, in order to get estimated frequencies of high watermarks of extreme
market events.

! Relevant literature includes [32], [19], [38], [26] and [40].
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2 From low to high frequency measures of risk via
extreme value estimators of volatility

It is well known that the amplitude of price changes is not constant, but fluctuat-
ing with time in a somewhat predictable fashion. The Integrated Variance (i.e.,
the variance of the instantaneous returns over a period) can be approximated
through estimators of the Quadratic Variation of prices. We present hereafter the
main measures of daily volatility, computed from either daily data or intra-day
data.

2.1 Measures of risk and extreme value estimators of volatility

The usual indicator of risk is the variance obtained from the series of closing
prices. Since this indicator is not constant over time, a way to diminish its
variations in the computation is to use a rolling window with a fixed range.

The general expression of the daily volatility is calculated with daily data in the
following manner:

oAwtn S G o

where N is the estimation window expressed in a number of business days,
n=1[1,...,T] and t = [N,...,T] are daily dates, {P,} is a sequence of closing
prices, and fi; is given by (with previous notations):

t
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which is an estimation of the mean log-return on the reference period.

A main critic of this daily estimator concerns the serial dependences. Indeed,
the same return observations are used in the computation of many successive
volatilities, which is all the more true since N is large. Moreover, Poon and
Granger [36] have noticed that the statistical properties of the sample mean
make it a very inaccurate estimate of the true mean. This is particularly true for
small samples since taking deviations around zero - or around a very long period
mean - instead of the sample mean on a short window, increases the accuracy of
the estimate (even if biased). If we consider this approach, the simplest measure
of Simple Volatility should be defined by the squared return between only two
observation dates (days), which is written:

. 1 P\’
Uf: [;ln (Pt—r)

1/2
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where 7 is the periodicity (one day per default), and {P;} is the series of the
price of the asset at time t.

In this case, there is no hypothesis about the mean return, and also no
serial dependencies. Then, we will use it as our instantaneous low frequency
volatility in the rest of the paper. Nevertheless, its time-variation is greatly noisy,
and, therefore, this estimate is not recommended for practical applications. It is
possible to reduce some of the noise, affecting the previous daily-based estimates,
by using an Exponential Moving Average? (EMA). The EMA estimator is defined
by induction with the following equation:

GEMA {pwff‘f“‘)%u—p) (5 )]} )

t—1

where p is the parameter governing the smoothness®.

Moreover, the counterpart of the simplicity of the previous volatility measure
computations is that they do not take into account the information given by the
path of the price inside the period of reference. For example, even at the low
(daily) frequency, supplementary information is often available in addition to
the closing price, such as the opening price and extremal prices within the day.
Parkinson [32] proposes, then, an estimator of the volatility based on this type

of data, given by:
N 2) 2
1 H,
~P _ z : n
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where Oy = 4N In(2) is a correction parameter, and:

H, = ]\4Pax {P, |t € [n—1,n]} is the highest price on day n
L, = ]\{Din {P, |t € [n—1,n]} is the lowest price on day n.

The efficiency of Parkinson’s Extreme Value Volatility estimator comes intu-
itively from the fact that the range of intra-daily quotes gives more information
regarding the true volatility than two arbitrarily spaced points in these series
(the closing prices), for the low cost of two data points per day. By this definition,
Parkinson’s estimator implicitly assumes that log-stock prices follow a geomet-
ric Brownian motion with no drift. Taking this assumption into consideration,
Rogers and Satchell [38] propose an improvement of the volatility estimator.
They add a drift term in the stochastic process that can be incorporated into a
volatility estimator (with previous notations):

2 Sometimes called a RiskMetrics type of measure.
3 It has been set to .5 (mild smoothing), corresponding to a half-life of one day or so.
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where O,, is the open price on day n.

At last, Yang and Zhang [40] propose another improvement by presenting an
Extreme Value Volatility estimator that is unbiased, independent of any drift,
and consistent in the presence of opening price jumps. Their estimator writes
(with previous notations):

o“fZ = {; i [ln (On/cnfl) —In (On/cnfl)r

N=1), T
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and with C,, being the closing price on day n, the notation X,, standing for
the unconditional mean of the sequence of the variable X,,, and 6/*° being the
Rogers-Satchell estimator (see definition above).

Concerning the previous defined estimators, Alizadeh et al. [2] underline that
range-based estimators have many interesting properties compared to low fre-
quency estimators or even, in some cases, to high-frequency based volatility es-
timators ([1], [30]). The range is a highly efficient volatility estimator as shown
by Brandt and Diebold [11] in a multivariate setting. For example, when the
market is characterized by drops and recoveries in the same day, the classical
close-to-close volatility can take low values while the daily range indicates that
the volatility is truly high. Furthermore, the range is robust to microstructure
biases such as the bid-ask bounce. When one measures the ratio of the variance of
the Extreme Value estimators over the Close-to-Close Simple Volatility, all pre-
vious estimators provide very substantial improvements. For example, Corrado
and Miller [14] report that Parkinson’s estimator allows a theoretical relative
efficiency gain comprised between 2.5 and 5.

Moreover, while the extreme estimators are still dealing with traditional mea-
sures, the availability of tick-by-tick data led to a reframing of both theoretical
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and empirical literature on volatility. Instead of considering a constant volatility
over a certain period of time (a day for instance), the continuous time model
assumes a continuously varying volatility. The risk over the considered period is
thus no longer a constant value, but the so-called Integrated Volatility. In a con-
tinuous framework, the most common stochastic equation of the price process
is:

dlog(P;) = py dt + o1d By, (7)

with P; the price at time ¢, u; the drift term, B; the standard Brownian mo-
tion and o; the instantaneous volatility. This leads to the Integrated Volatility
over the time interval 7, that is [ o7dt. In this case, the empirical Integrated
Volatility is in fact the Realized Volatility defined as:

1

)2 ; )

where ¢ is the time interval between two successive observations and {P;} the
sequence of high frequency (intraday) prices.

The next section is devoted to the study and the comparison of the six
previously defined volatility estimators, namely the Realized, the Parkinson, the
Rogers-Satchell, the Yang-Zhang, the Simple and the EMA Volatility estimators,
by considering their time series and empirical distributions.

t/T

P

o = |om (5
j=1
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j—1

2.2 Descriptive statistics, correlations and distribution diagnoses of
the volatility

We represent in Figure 1 the various weekly estimates of daily volatility, using
CAC40 French stock index intraday quotes, resampled at a 30’ frequency in
the period 01-01-1997 to 12-31-2006. The peaks of the variance estimates are
approximately synchronous, but the general behavior of the series differs, both
in the range of variances and persistence phenomenon (see next section). We
remark also that Parkinson’s estimator is the closest to the Realized Volatility
in terms of similarity and general behavior.

Table 1 presents the four first moments of the empirical log-volatilities. The
asymmetry coefficient of skewness is mostly positive (with the exception of
Roger-Satchells volatility, exhibiting many very small values); the mass of prob-
ability on the right side of the distribution appears slightly larger than on the
left side. The kurtosis differs across measures, with the Simple Volatility and
the Rogers-Satchell measures appearing leptokurtic (due in fact to the existence
of many observations close or equal to zero). Overall, as already seen in Fig-
ure 1, estimators using intra-day data are less volatile (more accurate) than the
classical estimator.

Table 2 corresponds to the Pearson and Spearman correlation coefficients of
risk log-estimations. It confirms once again that Parkinson’s volatility is very
close to the Realized Volatility.
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Fig. 1. Daily Estimates of Annualized Volatilities (Source: Euronext, 30’ sampled in-
traday CAC40 French stock index quotes from the period 01-01-1997/12-31-2006. Com-
putations by the authors).

It is generally admitted, since the seminal paper by Cizeau et al. [12], that
the log-volatility is approximately Gaussian for a daily integrated-horizon (see
[5]), even if it is still discussed (see [37]) or can be generalized (see [10]).

The Probability-to-Probability plots reported on Figure 2 show the empirical
cumulative distributions of each volatility versus the Gaussian hypothesis. All
of the scale and shape parameters are estimated using the Maximum Likelihood
estimation method (e.g., [27]).

A simple eye-ball analysis confirms the diagnosis based on higher moments:
Gaussianity cannot be rejected at traditional significance levels for the most ac-
curate estimates (namely Realized and Range-based Volatilities). Nevertheless,
the differences in the left hand tails or in the mode and, likewise, small local
differences in the curve can be diluted in the whole sample. A specific diagno-
sis of market volatility is relevant in turbulent periods and some inaccuracy in
low risk periods can be tolerated provided, the estimator performs better oth-
erwise. However, when studying volatility distributions, the area of interest is
the right-hand tail where the highest volatilities are located. We have chosen to
study more precisely these particular observations in the next section, by using
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Table 1. Statistics of the (Log-)Volatilities

Mean Std Skewness Kurtosis Beta

(%) (%) (log vol) (log vol)
Realized 16.31 9.82 .24 2.97 1.00
Parkinson 14.53 9.37 .10 2.98 .95
Rogers-Satchell 15.27 10.41 -1.28 7.29 .93
Yang-Zhang 20.42 12.91 .02 2.97 .87
Simple 16.65 16.16 -1.29 6.13 .80
EMA 19.72 12.27 .04 2.93 .73

Source: Euronext, 30° sampled intraday CACA0 French stock index quotes from the
period 01-01-1997/12-81-2006. The Beta is computed for every estimator with respect
to the Realized Volatility. Computations by the authors.

Table 2. Pearson’s and Spearman’s Correlations between Risk Measures

Realized Parkinson Rogers- Yang- Simple EMA
Satchell Zhang

Realized 1.00 .88 .65 .79 .34 .67
Parkinson .87 1.00 .62 .75 .39 .66
Rogers-Satchell .78 17 1.00 .71 .09 .32
Yang-Zhang 7 .74 .81 1.00 42 .65
Simple .39 .44 .18 48 1.00 .62
EMA .66 .64 .42 .64 .71 1.00

Source: Furonext, 5 sampled intraday CAC/0 French stock index quotes from the
period 01-01-1997/12-81-2006. This table contains empirical Pearson (upper triangle)
and Spearman (lower triangle) correlation coefficients between risk measures. Compu-
tations by the authors.

the Parametric Block Mazima method for a Generalized Extreme Value (GEV)
distribution of extrema.

3 Extreme values of the daily risk estimates

The Generalized Extreme Value distribution (Cf. [25]) is characterized by three
parameters: h € IR, the location parameter, o € IRy, the scale parameter and
¢ € R known as the shape parameter (which is the inverse of the tail index).
The last one measures the rate of decrease of the probability in the tails. The
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Fig. 2. Goodness-of-Fit of a Gaussian Distribution (Source: Euronext; 5’ resampled
intraday CAC40 French stock index quotes from the period 01-01-1997/12-31-2006.
Computations by the authors. The P-P Plots show the cumulative distribution of each
volatility - on the x-axis - versus the Gaussian hypothesis - on the y-axis).

GEV Cumulative Distribution Function is given by:

exp{ — |14+ ¢l=h) - if €40,
H(o) = { [ } } 9)

exp {— exp {—@} } otherwise,

for every o € IR such that [1 +&(o — h)a™1] > 0.

For fat-tailed distributions, the shape parameter will be significantly positive.
We are then interested in the following to test the null hypothesis Hy of the
positivity of shape parameters of the noisy volatility estimators.

Among the multiple methods of estimation for the parameters of a GEV
distribution, the most common one is to use a direct numerical Maximization
of the Log-likelihood. However, a natural challenger is proposed in the case of
small samples (which is by definition the case when studying extreme events)
and proved as one of the best methods for parameter estimations. This com-
plementary method is based on the computation of the Probability Weighted
Moments (see [21] and [24]). For the following empirical applications, we need to
use the estimation of sample counterparts of L-moments for assessing the shape
parameter as underlined hereafter. The L-moments, which are linear functions
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of the expectations of order statistics, were introduced by Sillitto [39]. One of
the main advantages over conventional moments is that they suffer less from the
effects of sampling variability because they are linear functions of the ordered
data. They have been shown to provide more robust estimators of higher mo-
ments than the traditional sample moments. They can also characterize a wider
range of distributions compared to the usual moments. Formally, the L-moment
of order r is defined as:

Ar = ZPZ—l,r—l Br—1, (10)
k=1

with:
kal = k71 E(X[kk])a

where p* are the shifted Legendre polynomials coefficients, and ;1 are the
Probability Weighted Moments of order k = [1,...,r].

They can be estimated without bias from the sample Probability Weighted
Moments computed such as:

n k—1 . .
s =2 YA TL [ e (1)

i=1 | j=1

where X [i:n] is the i-th order statistic of a sample of n realizations (see Appendix).
When the shape parameter is different from zero, the three first L-moments,

as a function of the characteristic parameters of a GEV Cumulative Density

Function, are given by (see [23], [18], and the proof in the Appendix):

M=h—24er(1-¢)
o=¢ (22-1)I(1-¢) (12)
Ay = ¢ [1-3(2°) +2(39)] I'(1 - ¢)
where h € IR is the location parameter, o € IR, the scale parameter, ¢ € IR*
the shape parameter and I'(a) = f0+oo to~le~tdt is the Gamma function.

These estimates of the three first L-moments are sufficient to get an esti-
mation of all three parameters characterizing a GEV distribution, using any
classical numerical solving method. In order to check that the GEV density pro-
vides a good approximation for the distribution of the mazima in our sample, we
apply the Kolmogorov-Smirnov Goodness-of-Fit test to the resulting distribu-
tions. This test never rejects the hypothesis that the GEV density fits the data,
with the lowest P-value being .16 for the 5%-threshold mazima of the realized
volatility.

The following Table 3 gives estimates of the shape parameter, based on max-
1ma of the daily log-volatilities, with the Maximum Likelihood and the L-moment
methods. We first notice that the shape parameter estimations obtained with the
two methods are similar most of the time. Moreover, the shape parameter estima-
tion of the Realized Volatility on a weekly basis (-.17) and the one of the EMA on

Q|
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a quarterly basis (-.14) are the closest to zero. We also remark that, with longer
windows, estimations are smaller than with short windows. In other words, the
lower the frequency for collecting the index, the more limited the presence of
financial krachs, marked by extreme volatilities. Finally, and more importantly,
whatever the method, the frequency and the estimate, none of the estimated
shape parameters (and then tail indexes) is positive. This clearly proves that
none of the underlying distributions can be considered as fat-tailed.

Table 3. Estimates of Shape Parameters of Generalized Extreme Value Distribu-
tions of Daily Log-volatilities Period Mazima via Maximum Likelihood and Probability
Weighted Moment Methods

Method Frequency Realized Parkinson Rogers- Yang- Simple EMA
Satchell Zhang

Maximum  Weekly =17 -.23 -.24 -.22 -.31 -.24
Likelihood  Monthly -.24 -.21 -.35 -.24 -.24 -.22
Quarterly -.48 -31 -.56 -.35 -31 -.25
Weekly =17 -.21 -.24 -.24 -.30 -.25
L-Moments Monthly -.20 -.24 -.30 -.26 -.23 -.20
Quarterly -.30 -.27 -.48 -.37 -.18 -.14

Source: Furonext, 30’ sampled intraday CAC40 French stock index quotes from the
period 01-01-1997/12-81-2006. Computations by the authors.

The previous shape parameters correspond to real market data series. In or-
der to reinforce our previous conclusions and following Danielsson and de Vries
[15], we renew the shape parameter estimation exercise using bootstrapped series
of volatilities for assessing some inferences about the shape parameter estima-
tions. More precisely, after computing the daily volatilities according to each
estimator, we draw with replacement volatility series from these estimates and
compute new weekly, monthly and quarterly mazima from these virtual samples.
These new mazima being uncorrelated by construction, we can then fit a GEV
distribution these series and draw the empirical distribution of the resulting
shape parameters. We present hereafter in Figure 3 (respectively, in Figure 4),
the GEV shape parameters estimated using the Maximum Likelihood method
(respectively, the L-Moment method) based on 500 bootstrapped series of weekly
mazxima of daily volatilities. This frequency is chosen since the one for which the
estimation of the shape parameter for the Realized Volatility (the benchmark)
is the closest to zero*. Ranging from -.39 (Simple Volatility) to -.12 (Realized
Volatility), it appears that none of the shape parameters of volatility estimators
exhibit a positive value on the rebuilt new artificial extreme volatility series.

4 Results taken into account at monthly and quarterly frequencies (not reported here)
lead to the same kind of qualitative conclusions.



130 Bertrand Maillet et al.

These last results clearly indicate that the negative values of the shape param-
eters observed with the real series are neither exceptional nor due to the specific
characteristics of the volatility time series; the sign remains the same whether
these characteristics are or are not accounted for. To sum up, the resampling
results allow us to assert the significance of the negativeness of the shape pa-
rameter of the log-volatilities: there is no need to use fat-tailed distributions to
account for the extremes of the log-volatilities. The log-normal approximation
proves adequacy, at least for the asset (the CAC40 index), the frequency (30’
quotes) and the sample (1997-2006) considered and by using our methodology
(Maximum Likelihood and L-Moment methods), with the chosen density (GEV
distribution) and the horizon considered (daily, weekly and quarterly).
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Fig. 3. Bootstrapped Values of the Maximum Likelihood GEV Shape Parameters of
the Daily Volatility Weekly Mazima (Source: Euronext; 30’ resampled intraday CAC40
French stock index quotes from the period 01-01-1997/12-31-2006. Computations by the
authors. The bootstrapped values of the shape parameters of the Realized Volatilities
are plotted on the x-axis, the empirical cumulative distribution on the y-axis).

To confirm the previous observations, we present in Table 4 the shape param-
eters estimated on bootstrapped series of volatilities and on series of volatilities
obtained from bootstrapped series of returns. In order to reshuffle the series, we
use four methods of bootstrap: the simple one ([16]); the stationary one ([34]);
the circular one ([33] and [35]); the accelerated one ([17] and [20]). We observe
that the shape parameters obtained are similar whatever the bootstrap methods
and series, and are also equivalent to the estimates obtained from the original
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Fig. 4. Bootstrapped Values of the L-Moment method GEV Shape Parameters of the
Daily Volatility Weekly Mazima (Source: Euronext; 30’ resampled intraday CAC40
French stock index quotes from the period 01-01-1997/12-31-2006. Computations by the
authors. The bootstrapped values of the shape parameters of the Realized Volatilities
are plotted on the x-axis, the empirical cumulative distribution on the y-axis).

series. This allows us to conclude that the shape parameters remain undoubtedly
strictly negative.

For finally validating furthermore these results, we introduce herein a final
simple reality check: given the sample estimates of the parameters, it is now
possible to compute the probability of observing the historical volatility peaks
under the various measures and hypotheses. The sample spans from January
1997 to December 2006, with the highest volatilities occurring in most cases
at the terrorist attack on the Twin Towers (September 2001). Using the shape
parameter from the GEV distribution, estimated from the Maximum Likelihood
Method, we now compute the probability of these events and their associated
return-times. Table 5 presents these probabilities®.

Though this reality check has a very limited statistical significance, it allows
us to filter the results according to our subjective estimation of the likelihood
of a major event. Even if the shape parameter appears relatively stable over
the choice of the estimators, we obtain important different return-times, which
implies large differences in the other parameters of the GEV distribution. To
illustrate this idea, we give in the following figure the density of each estimate,

5 For information, when the return distribution is estimated by the Maximum Like-
lihood Method for a Normal distribution, the three largest probabilities of returns
are 3.88 107°%, 5.67 1075% and 6.10 10~°% which give respectively the following
return-times: 103,085 years, 70,538 years and 6,567 years.
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Table 4. Comparison of Estimates of Shape Parameters of Generalized Extreme Value
Distributions of Daily Log-volatilities Weekly Mazxima using Maximum Likelihood and
Bootstrap Methods

Series Methods Statistics Realized Parkinson Rogers- Yang- Simple EMA
Satchell ~Zhang
Shape Param. -.24 -.23 -.22 -.21 -.28 -.25
Simple [5%;95%)] [-.27;-.21] [-.27;-.19] [-.27;-.18] [-.26;-.18] [-.32;-.25] [-.28;-.22]
KS P-stat (.51) (.57) (.52) (.54) (.56) (.54)
Shape Param. -.15 -.21 -.24 -.19 -.31 -.27
Return Stationary [5%;95%)] [-.19;-.10] [-.26;-.17] [-.29;-.18] [-.24;-.14] [-.36;-.26] [-.32;-.22]
KS P-stat (.61) (.60) (.54) (.57) (.48) (.54)
Shape Param. -.19 -.21 -.22 -.20 -.29 -.25
Circular [56%;95%)] [-.23;-.15] [-.27;-.16] [-.27;-.16] [-.25;-.15] [-.34;-.25] [-.29;-.2]
KS P-stat (.61) (.56) (.52) (.58) (.51) (.55)
Shape Param. -.22 -.20 -.22 -.22 -.31 -.24
Accelerated [5%;95%)] [-.26;-.18] [-.23;-.16] [-.26;-.17] [-.25;-.17] [-.33;-.28] [-.27;-.20]
KS P-stat (.47) (.45) (.50) (.49) (.53) (.46)
Shape Param. -.22 -.19 -.25 -.24 -.32 -.24
Volatil. Stationary [5%;95%)] [-.265-.17] [-.24;-.14] [-.29;-.21] [-.29;-.20] [-.36;-.27] [-.29;-.19]
KS P-stat (.58) (.57) (.53) (.52) (.54) (.52)
Shape Param. -.22 -.21 -.22 -.22 -.30 -.24
Circular [6%:95%] [-.31;-.11] [-.27;-.15] [-.32;-.11] [-.30;-.12] [-.35;-.25] [-.29;-.19]
KS P-stat (.35) (.51) (.44) (.41) (.51) (.46)

Source: FEuronext; 30° resampled intraday CAC40 French stock index quotes from the
period 01-01-1997/12-81-2006. The shape parameters for the various volatility mea-
sures are estimated by the Method of Maximum Likelihehood of a GEV density with a
weekly frequency (the block mazima length) on 10,000 series obtained with bootstrap
methods (simple: [16]; stationary: [34]; circular: [88] and [35]; accelerated: [17] and
[20]) on series of returns or on series of wvolatilities. The 90% confidence intervals
of shape parameters are reported in brackets, whilst P-statistics of Goodness-of-Fit
Kolmogorov-Smirnov tests (denoted KS P-stat.) are between parentheses. Computa-
tions by the authors.

obtained for a GEV distribution, and we compare them to the empirical density
functions. It appears the two curves are similar, which is a good sign regarding
the pertinence of probabilities and return-times we obtained.

Further within the tail, the variability increases and estimates can still differ
by a factor larger than two, so the choice of the measure is not insignificant.
Overall, the estimates seem to give return-times which are more in line with the
size of the sample (about ten years), except for the Yang-Zhang one, which gives
return-times slightly larger as the sample length. We also notice the return-times
decrease quickly between the first and the third extreme values. From these es-
timations of the extreme values, computed with several methods and for various
volatility estimators, we can prudently infer with reasonable confidence that it is
unlikely that a fat-tailed distribution is needed to fit the high volatilities. Indeed,
we have obtained in most cases negative shape parameters, which corresponds
to a reversed Weibull-kind of distribution. However, range-based and intra-day
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Table 5. Probablity of Largest Negative Returns and Largest Daily Volatilities, and
Return-Times using Maximum Likelihood GEV Estimates

Weekly Monthly Quarterly
Estimator Crisis Values Prob. Return Prob. Return Prob. Return
Times Times Times

11/09/2001 -7.68% .05% 37.73% .54% 14.81% .78% 33.34%

Returns 15/04,/2000 -7.55% 1.22% 1.64 1.33% 6.02 1.91% 13.61%*
14,/03/2003 -7.00% 3.88% 0.51 4.20% 1.90 5.94% 4.38

12/09/2001 91 63% 3.15 2.01% 3.99 5.92% 4.40

Realized 24/07/2002 .71 68% 2.96 2.12% 3.77 6.27% 4.14
03/04/2000 .70 .88% 2.31 2.69% 2.98 7.99% 3.25

11,/09/2001 o1 64% 3.11 2.21% 3.42 2.01% 6.85

Parkinson 15/03/2003 71 .93% 2.03 2.32% 3.24 6.59% 3.92
25/07/2002 .70 97% 1.96 2.81% 2.78 7.52% 3.41

05/04/2000 .70 68% 2.92 2.39% 3.35 4.16% 6.26

Rogers-Satchell 24/07/2002 .64 1.06% 1.88 3.47% 2.31 7.22% 3.60
21/09/2001 .63 1.10% 1.82 3.57% 2.24 7.50% 3.47

17/04/2000 1.20 17% 12.08% B57% 14.07% 1.87% 13.93%*

Yang-Zhang 05/01/2000 1.00 51%  3.93 1.67% 4.79 5.65% 4.60
21/09/2001 .90 89% 2.26 2.79% 2.86 9.09% 2.86

11/09/2001 1.17 .19% 10.39% 1.15% 6.94 4.61% 5.64

Simple 14/03/2003 1.14 .23% 8.55 1.30% 6.14 5.06% 5.15
29/07/2002 1.11 31%  6.38 1.57% 5.08 5.83% 4.46

14/03/2003 .98 15% 13.01% .79% 10.13% 3.59% 7.25

EMA 15/10/2002 .85 50% 4.01 1.84% 4.35 6.58% 3.95
11/09/2001 .84 54%  3.69 1.96% 4.08 6.89% 3.78

Source: Euronext, 30° sampled intraday CAC40 French stock index quotes on the period
01-01-1997/12-31-2006. Return-times are expressed in years and they are marked with
an asterisk * when they are larger than the size of the sample, i.e. 10 years. Computa-
tions by the authors.

volatilities are not incompatible with the log-normal hypothesis and thus the
standard approximation is not significantly flawed.

4 Conclusion

The Realized Volatility, despite its known shortcomings, remains a benchmark
to which measures of risk should be compared. We show here that, among the
low-frequency volatility measures, Parkinson’s volatility was the closest to the
high-frequency benchmark measure. This estimator should thus be the one used
when trying to get long-horizon historical estimates, or to complement series of
Realized Volatilities. Generally speaking, estimations of the whole distribution
of the empirical volatilities cannot help to easily distinguish between the can-
didate functional forms. Given the rationale for estimating these distributions -
retrieving possible risk - and the main differences between them - in the tails -
it seems natural to try instead to use the Extreme Value Theory and concen-
trate on estimating the asymptotic distribution for the extreme measures of risk.
The estimations for the Generalized Extreme Value indicate that the fat-tailed
distribution is not needed to fit the sample volatilities. A log-normal process,
as in the traditional stochastic volatility model, seems sufficient to reproduce
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Realized Parkinson

Estimated
©  Actual

-12 -11 -1 -09 -08 -07 -06 -05 -04 -03 -1.4 -12 -1 -0.8 -0.6 -0.4 -0.2

Rogers-Satchell Yang-Zhang

0.9 0.9

7~

-0.8 -0.7 -06 -05 -04 -03 -02 -0.1 0 0.1 -1 -0.8 -0.6 -0.4 -0.2

Fig. 5. Empirical and Estimated Density Functions of the Volatility Estimates (Source:
Euronext; 30’ resampled intraday CAC40 French stock index quotes from the period
01-01-1997/12-31-2006. Are represented in this Figure, on the y-axis, the empirical
cumulative functions of the log-volatilities (dots), altogether with their GEV best fits
(thin lines). Annualized Daily Volatilities are represented on the x-axis. Computations
by the authors.

the extreme empirical volatilities observed in the ten year ultra-high frequency
studied sample.

However, we can think about confirming these results in line with others
(see [5]) with a complementary analysis including additional measures (e.g., [26];
[19]), other samples (containing this time individual stocks), more recent observa-
tions (highlighting recent market turmoils and credit linked events in 2007, 2008
and 2009), different methodologies (Parametric Block Mazima and Parametric
Peaks-over-the-Threshold), complementary estimation methods (other types of
Moment Estimations versus the Maximum Likelihood method), using various
distributions (Generalized Pareto Distribution versus GEV distribution), other
realistic sampling schemes (from one-minute to one-hour quote frequency) and
other horizons (30” to a quarter). One may finally think about a Reality Check
Test based on the various estimators, assets and methods of estimation (see [41]),
for reinforcing our preliminary results on the best specification for the probability
model for volatility. In particular, the final conclusion for a thin tail distribution
for the volatility is deeply related to the choice of the estimation period. The
recent turmoil on the financial markets, with its scope and it persistence, should
have an important impact on the distribution of the volatility and then should
questions its extreme behavior.
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A practical application of these results will be to plug the appropriate esti-
mates and distributions of volatilities in the Index of Market Shocks (IMS, see
[28] and [29]) in order to get a clear ranking of the historical crises and an accu-
rate estimation of the return-times of extreme scenarii, to ultimately precisely
define the high watermarks of market risks.

Appendix

Let {X,}, with j = [1,...,n], be a sequence of n independent and identically
distributed non-degenerated random variables with a cumulative continuous dis-
tribution function F(z) and with a quantile function Q(u) = F~*(u).

We recall that the r-th L-moment is defined, for every » = [1,...,n], by:

Z ‘ (X[r J: r]) (13)

where X, is the i-th order statistic of a sample of r random variables.
Now since:

E(X[i;r]) = #'(T—Z)"/o Q(u)ui_l(l _ U)T_idu, (14)

we obtain:

v=1f o [T ) e e (9
=/ 2 R P s T '

It is often useful to express the r-th L-moment as a linear function of the Prob-
ability Weighted Moments, 1i.e.:

A= i1 Brts (16)
k=1

where p* ~are the Legendre polynomials coefficients, and 8 = k™~ LE(X [k:k]) are
the Probabﬂlty Weighted Moments of order k = [1,...,r].
They can be estimated without bias by the followmg estimations:

n k—1

b =YL [ e an)

i=1 | j=1

where X [i:n] 18 the i-th order statistic of a sample of n realizations.
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The three first sample L-moments can then be written in the following man-
ner:

< 1 <X -
=1

o
~n(n—1) (18)

D I6(i—1)(i —2) = 6(i — 1)(n — 2)
i=1
+(n = 1)(n — 2)]X[im)-

v
~n(n—1)(n—2)

Based on these previous definitions, we can now give a specific result on the
L-moments for a GEV distribution.

Proposition 1. (see [25] and [18]). The three first L-moments, as a function
of the three characteristic parameters of a GEV Cumulative Density Function,
are given by:

M=h—%+2r1-¢
=2 (22 -1)I(1-¢ (19)
As = ¢ [1-3(2%)+2(39)] r(1-¢)

where A\, ts the r-th L-moment, h € IR the location parameter, o € IR the
scale parameter, & € IR* the shape parameter and I'(a) = f0+oo t*~le~tdt is the
Gamma function.

Proof. We get the following intermediate result, for every k € N:

1 “+o0
[t = [ et e
0 0

+oo
— W/@ Yy te Vdy (20)
1
= mp(l &),

thanks to simple changes of variable.
Given the quantile function of the GEV distribution such as:

u) = _a g—nu_5
Qu) =h §+§[1()]7 (21)

we can then compute the first L-moment:
1
AL = / Q(u)du
0
1

= —gu @ 1—nu7§u.
—/O<h 5>d+§/0[1<>1d (22)
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Using result (20), we obtain the final expression for the first L-moment so that:

A :h—%+%F(1—§). (23)

Similarly, the second L-moment is given by:

do = /01 {h _ % + %[—m(u)]-ﬁ} 20 — 1]du

1, . 1y .
:/0 2ug[—ln(u)] du—/o E[—ln(u)] du (24)

and applying result (20) once again is leading to the following expression of the
second L-moment:

(67

Ao = E (28 —1)I(1-¢). (25)
Finally, the straightforward expression of the third L-moment is:
! a o«
Ag = / {h ~ + Z[— ln(u)]g} [1 — 6u + 6u?]du (26)
0

which is leading, still using the intermediate result (20), to the expression of the
third L-moment:
As = % [1-3(28) +2(3%)] I(1—¢). (27)
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