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Abstract. The distribution of securities prices in financial markets is
known to exhibit heavy tails, and furthermore the time trajectory has
occasional extreme swings or reversals in direction. The modelling of
heavy tails has been achieved with the addition of a homogeneous point
process to a diffusive process. However, the timing of the jumps in the
point process should capture the price reversals. In this paper a non-
homogeneous point process is introduced, so that the intensity and size
of jumps are state dependent. The state is characterized by stress mea-
sures, which are composed from combinations of risk factors. The factors
considered are the bond-stock yield differential and the volatility index.
The parameters in the model are estimated from data on the US market
from 1990 - 2007. An out-of-sample test is performed for 2008 - 2009.
The model captures the swings in equities prices and provides a basis for
anticipating reversals from risk factors.
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1 Introduction

The short and medium term dynamics of equity markets in developed economies
have in recent years (e.g. last two decades) increasingly shown evidence of fun-
damental imbalances associated with frequent volatility regime switching and
occasional prolonged periods of one-sided tail events. The development of new
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modeling approaches capturing those complex dynamics in several equity mar-
kets (e.g. US, Japan, UK) has been unprecedented with a remarkable impact
on financial practice and investment decisions (see [6], [20], [23] as recent refer-
ences). A range of possible modeling frameworks are now available to fit highly
skewed and fat tailed as well as canonical market distributions and adapted
to risk assessment and portfolio optimization applications. In early studies [1],
[14], [4] we have presented an equity return generation model for the US market
characterised by a continuous diffusion process with random drift and a Cox
process with state-dependent intensity and shocks. The associated stock price
process belongs to the class of right-continuous left-limited (RCLL) processes.
A key role, in the proposed framework, is played by what we call the risk or in-
stability process defined uniquely by the point process (see below equation (5)).
Relative to earlier approaches the model sets a clear and statistically testable
relationship between equity market reversals and an underlying source of risk
whose behaviour can be inferred from market trends. The introduction of an
inner source of instability driving the market volatility provides a clear general-
ization of previous approaches with a potential to link the economics of financial
instability and its statistical characterization.

From a financial viewpoint the possibility to identify stress factors induc-
ing large inflows and outflows in the equity market is of primary importance
for strategic allocation decisions and policy makers interventions. The former
Federal Reserve Chairman Alan Greenspan has indeed pushed forward, in his
famous 1996 irrational exuberance speech, the idea that the bond-stock earning
differential should have been considered to assess equity markets relative mis-
valuation [1], [18] before the 1987 crisis. Ziemba and Schwartz [22] had already
considered a similar risk measure in 1991. The economic rationale being that in
the very long run the equity market is expected to fluctuate around a theoretical
value determined by the market earning expectations and a discount factor re-
flecting the 10 year interest rate behavior. This measure has been shown in [4] to
occasionally underestimate the observable market dynamics over the 1980-2005
period in the US. Furthermore a risk process uniquely driven by the yield differ-
ential has been shown to be statistically significant and appropriate to capture
market reversals, though neither necessary nor sufficient to anticipate observed
market shocks.

We propose in this work an extension of the financial model to account for
an additional risk factor directly generated by the options market. The Chicago
Board Options Exchange (CBOE) defines an implied volatility measure called
the VIX. The index is updated daily on the basis of 30 day ATM options traded
on the S&P 500 index. As such the index reflects investors’ expectations of
forward market movements. According to the structural default model [16], [3],
the aggregate implied volatility in the equity market, capturing the relationship
between leverage and equity returns, is a key variable in assessing the credit cycle
and it is heavily correlated with the prevailing spreads in the credit markets.

If the rational for the inclusion of the bond yield differential as a potential
stress measure comes from the (continuously varying) expected impact of the
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risk free interest rate and the market expectation over future earnings, the con-
sideration of the VIX does reflect both an aggregate measure of an economy wide
credit cycle (according to the structural approach to credit risk) and a direct
signal of the market uncertainty over future corporate performance. An increas-
ing implied volatility indicator would then reflect a generalized contraction of
investors planning horizons and a reduction of corporate earnings, resulting into
an equity market downturn.

The ultimate aim of our study is twofold: we introduce a general statistical
procedure based on a recursive maximum likelihood estimator to characterize
underlying risk processes determining equity returns, and we propose the intro-
duction of two risk indicators with the potential to anticipate market reversals.
The presented methodology can be generalized to many instability factors, and
alternative indicators can be put forward to capture the equity market senti-
ment. In this article we show that the introduction of market stress measures,
which are combinations of risk factors (we just consider two such factors), jointly
with a canonical geometric Brownian motion model may in certain periods im-
prove the fitting of market dynamics even during periods of severe instability.
The study is conducted over the 1990-2009 period in the US market.

In Section 2 of this paper the risk indicators impacting the securities mar-
ket are defined. The dynamics for securities prices are separated into a diffusion
and a nonhomogeneous point process, referred to as the risk process. The risk is
modeled by Weibull processes, with jump size and intensity parameters depend-
ing monotonically on the risk factors through stress measures. A conditional
maximum likelihood estimation procedure is discussed in Section 3, where the
identification of jump times in the point process follows from the monotonicity in
the stress measures. In Section 4 the methodology is applied to market data on
stocks and bonds in the US for the period 1990 - 2009. The market implications
of the pricing model and in particular the risk process are discussed in Section
5.

2 Risk indicators

The focus of our study is represented by the equity market (here specifically the
US equity market). To account for investment movements from and towards the
fixed income market we present a stochastic model for the equity and the bond
market.

Consider in particular: S(t) = stock price at time t; B(t) = bond price at
time t. The stock and bond prices are random variables defined on a probability
space (Ω,F , P ), representing the uncertain dynamics of the market. With the
prices on a log scale, let Y1(t) = ln(B(t)), Y2(t) = ln(S(t)).

It is assumed that the dynamics of price movements are defined by geometric
Brownian motion for bonds, and geometric Brownian motion plus a marked point
process for stocks. The level I or conditional log-price dynamics, given parameter
values and initial conditions Y1(0) = y1, Y2(0) = y2, are defined by the equations



104 Leonard MacLean et al.

dY1(t) = [µ1(t)dt+ δ1(t)dW1(t)] (1)

dY2(t) = [µ2(t)dt+ δ2(t)dW2(t)] + [dR(t)] . (2)

In these equations, W1t and W2t are independent standard Wiener processes.
It is assumed that the drift parameters α1(t) and α2(t) are random variables,
whose distributions are affected by common market forces. Those common forces
also generate the correlation structure between the prices on stocks and bonds.
For the drift, the dependence on factors is implicit rather than explicit. Consider
the market factor, given by F (t) at time t, where F (t) is a standard Gaussian
variable. Then the random drift parameters are

µ1(t) = µ1 + γ1F (t) (3)

µ2(t) = µ2 + γ2F (t). (4)

These equations represent the effect of the market forces on the direction of asset
prices. The log-prices for the assets are correlated, with the correlation captured
by the relationship to the common factor F , as defined by (γ1, γ2). Therefore
corr(dY1, dY2) = γ1γ2.

The idiosyncratic volatility parameters are assumed to be deterministic, so
δ1(t) = δ1, and δ2(t) = δ2. The full set of parameters in the Brownian motion
component are represented as Θ = (µ1, µ2, γ1, γ2, δ1, δ2).

The risk component dR(t) = dR1(t)+dR2(t) , where dR1(t) and dR2(t) repre-
sent up and down shocks respectively, is a marked point process with time/state
dependent sizes and intensities. The separate point processes determine the
shocks to the stock price. The components of the risk processes are assumed
to be affected by multiple risk factors, X = (X1, . . . , XJ), So the size ϑi(X)
and the intensity λi(X) of up, i = 1, and down, i = 2, shocks depend on X. It
is assumed that up and down shocks are mutually exclusive. The rationale for
including separate processes for up and down shocks is the possible differences
in investor reactions to high and low values of the risk factors.

The risk process dynamics are

dR(t) = ϑ1(t)dN1(λ1(t)) + ϑ2(t)dN2(λ2(t)). (5)

The processes N1 andN2 characterize up shocks (E(ϑ1(t)) > 0) and down shocks
(E(ϑ2(t)) < 0), respectively. There are two factors or risk indicators which are
considered in this analysis: (i) the differential in yields on stocks and bonds; (ii)
the implied volatility of stocks. To capture the stress from yields, consider the
variables: U(t) = the stock market implied yield at time t; r(t) = bond market

yield at time t. Let ν(t) = r(t)
U(t) = ratio of bond yield to stock yield, and ν∗ = the

average or long term yield ratio.Then the following yield variables are proposed
as risk factors.

1. Yield up

X11(t) = max

{
ν∗

ν(t)
, 1

}
. (6)
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This factor is a force for an upward shock in equity prices based on the
undervaluation of securities.

2. Yield down

X12(t) = max

{
ν(t)

ν∗
, 1

}
. (7)

This factor is a force for a down shock in equity prices based on the overval-
uation of securities.
The Chicago Board Options Exchange (CBOE) defines an implied volatility
measure called the VIX. It represents the expected forward volatility of the
equity index around the risk free rate over the upcoming 30 day period (on
an annualized basis). The movement can be up or down. The VIX is reported
as a percentage. Since its introduction the indicator varied from historically
lows of 10% up to a maximum level of 50%. A large VIX value indicates
an expectation of a sharp increase of equities price volatility or shocks in
the terminology of this work. The risk factor based on implied volatility is
defined by the VIX:

X2(t) = 1 +
V IX

100
. (8)

The direction of a shock is not revealed by the VIX, so another indicator is
required. The obvious direction indicator is the yield ratio.

3. Volatility: Up

X21(t) =

{
X2(t) if ν(t) < ν∗

1 if ν(t) ≥ ν∗ .
(9)

4. Volatility: Down

X22(t) =

{
X2(t) if ν(t) < ν∗

1 if ν(t) ≥ ν∗ .
(10)

It is anticipated that the risk factors impact investor decisions. If equities are
overvalued, as determined by the yield ratio, then downward pressure on stock
prices grows and the likelihood af a shock increases. An expectation of volatility
in the equities market, as measured by the VIX, is an indication of an impending
shock. It is possible that the risk factors act separately or in combination. The
mechanism is stress or market discordance measures, with measure k defined as

πik(t) =

J∏
j=1

X
wjk

ji (t), (11)

where wjk > 0,
∑J

j=1 wjk = 1. On the log scale

ψik(t) = ln(πik(t)) =
J∑

j=1

wjk · ln(Xji).

The stress measures are analogous to principal components generated from the
risk factors. Since the measures are constructed to explain price movements
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rather than correlation between risk factors, the linear combinations will differ
from components.

The theory for the shock processes in this paper proposes that the shock
intensities depend monotonically on the stresses generated by the risk factors,
with increased stress implying a greater chance of a shock. Let πik, i = 1, 2, k =
1, . . . ,K be the stress for an up and down shocks respectively. An increasing
intensity implies a Weibull process, so that πik follows a Weibull distribution
with density for i = 1, 2

fik(πik) =
βik
ϕik

(
πik
ϕik

)βik−1

e

(
πik
ϕik

)βik
.

(12)

The cumulative distribution is Fik(πik) = 1 − e
−
(

π
ϕik

)βik

. The cumulative can
be written in terms of the stress measure as

ln {− ln [1− Fik(πik)]} = −βik ln(ϕik) + βikψik(t). (13)

The intensity associated with stress measure k is

λik(t) =
fik(πik)

1− Fik(πik)
. (14)

With the Weibull processes, where π has a Weibull distribution, it is known
that ψik = ln(πik) has an extreme value distribution. To have the shock size
reflecting extreme returns, it is assumed that size depends linearly on ψik(t). If
there is a shock at time t, the size is assumed to be

ϑik(t) = θik0 + θik1ψik(t) + ηikZik(t) (15)

where Zik(t), are independent, standard Gaussian variables. So the expected
shock size is proportional to the stress. With the stress related intensity and size
defined, the risk process dynamics are

R(t) =
∑
k

(ϑ1k(t)dN(λ1k(t) + ϑ2k(t)dN(λ2k(t)) . (16)

The distinguishing feature of the asset pricing model is the risk process. The
parameters in the risk process for a stress measure are Ξ = (Ξ(1), . . . , Ξ(J)),
where Ξ(k) = (θ1k0, θ1k1, θ2k0, θ2k1, η1k, η2k, ϕ1k, ϕ2k, β1k, β2k). It is hypothe-
sized that the risk factors characterize market stress, which in turn affects shocks
to equity prices through the model parameters: X → π → Ξ → R. In subsequent
sections these relationships will be explored with price data on bonds and stocks
in the US financial market.

3 Parameter estimation

The methods in this section provide estimates for the parameters (Θ,Ξ) in the
model for asset price dynamics. The parameters in Ξ depend on the risk factors,
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and define the risk process. So a framework is in place to study the risk process
and the risk factors.

Consider the set of observations at regular intervals in time (days) of log-
prices for bonds and stocks

{y1, . . . , yt} ,

where
y′s = (y1s, y2s), s = 1, . . . , t .

Let the observed daily changes in log-prices be

es = ys − ys−1, s = 1, . . . , t . (17)

The risk factors are needed for the period preceding a shock. The preferred
measure of stock yield is the earnings - price ratio. For the yields on stocks, the
earnings-price ratio is recorded: Ûs =

Es

Ss
. With the rate on the 10-year bond rs,

the yield ratio is v̂s =
rs
Ûs
. The VIX values are reported by the CBOE.

It is assumed there is an unobservable set of random shocks imbedded in the
observed increments. Let e = (e1, . . . , et) be the vector of observations and

I = (I11, . . . , I1t, I21, . . . , I2t)

be the associated shock indicators, where Iis = 1 for a shock, and Iis = 0
otherwise and I1s · I2s = 0, s = 1, . . . t. The conditional likelihood is L(Θ,Ξ) =
p(e, I) = p(e|I)×p(I), and then, the log of the likelihood is l(Θ,Ξ) = ln(p(e, I)) =
ln(p(e|I)) + ln(p(I)). The diffusion (random walk) parameters and the jump
size parameters can be estimated using the conditional log likelihood l(Θ|I∗) =
ln(p(e|I∗)) for a given jump sequence I∗. Note that ln(p(e|I)) = ln

∏t
s=1 p(es|Is) =∑t

s=1 ln(p(eis|Is)). The intensity parameters (ϕ1k, β1k) and (ϕ2k, β2k) can be es-
timated independently from ln(p(I)) using the Weibull distribution.

If the shock sequences can be identified, conditional maximum likelihood
can be used to estimate parameters. The hypothesis in the model is that the
risk process parameters depend monotonically on the risk factors through the
market stress functions. If there are thresholds such that the chance of a shock is
almost certain, then identifying the thresholds is critical. The approach is to set
threshold values for extreme stress, and times where the value is exceeded are
identified. If threshold values for high stress are (π∗

1k, π
∗
2k), then the increments

with {π1k > π∗
1k} identify up shock times and {π2k > π∗

2k} identify down shock
times. Given those shock times, conditional maximum likelihood estimates for
model parameters are determined. The value of the parameter estimates and
the conditional likelihood are compared for combinations of {(π∗

1k, π
∗
2k)} , and

appropriate thresholds for up/down shocks are established. Since the expectation
is that the risk/shock component of a price movement dominates the diffusion,
the positive and negative price changes will be used as a secondary indicator of
a shock period.

In considering market stress and the risk factors, there are two issues. (i)
the stress thresholds (π∗

1k, π
∗
2k); (ii) the weights assigned to the risk factors
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{wjk, j = 1, . . . , J} . It is important to identify thresholds where shocks are likely
to occur, but it is also useful to identify the relative importance of the factors.
The method proceeds as follows:

1. Set the weights {wjk, j = 1, . . . , J} , and calculate the stress values πik(t), i =
1, 2.

2. Calculate the empirical distribution F̂1k for stress values π1k, and F̂2k for
stress values π2k over the study period (1, t).

3. Specify a grid size ω > 0, an initial tail area p for deviations, and a step
number mmax. Set m = 0.

4. With a grid point m and a tail area αm = p−mω, identify times/indices

T1m =
{
s | [es ≥ 0] ∧ [F̂1(π1,s−1) ≥ 1− αk]

}
T2m =

{
s | [es < 0] ∧ [F̂2(π2,s−1) ≥ 1− αk]

}
.

5. Assume there is an up shock at times s ∈ T1m,and a down shock for times
s ∈ T2m. For this sequence of shocks, calculate the conditional maximum
likelihood estimates for model parameters.

6. Reset m and return to [3].
7. Select the thresholds and shock times which provide the best fit - minimum

mean squared error.
8. Reset the weights and repeat the process.

For given thresholds and the identified shock times, a conditional likelihood max-
imization is required. The diffusion and the jump size parameters are estimated
by maximizing the log-likelihood, l(Θ|I) = ln(p(e|I)) for a given sequence I. The
Weibull parameters are estimated from l(Ξ|I) = ln(p(I)).

The conditional distribution for es given I and Θ is a bivariate normal distri-
bution with mean vector ξs(I,Θ) and covariance matrix, Σs(I,Θ), respectively,

(
ξ1s
ξ2s

)
=

(
µ1

µ2 + I1s
∑

k(θ1k0 + ψ1ksθ1k1) + I2s
∑

k(θ2k0 + ψ2ksθ2k1)

)
(18)

(
σ2
1s σ12
σ12 σ

2
2s

)
=

(
γ21 + δ21 γ1γ2
γ1γ2 γ22 + δ22 +

∑
k η

2
1kI1s +

∑
k η

2
2kI2s

)
. (19)

It is informative to note that the mean and volatility for stocks are time vary-
ing. For the given values of the shocks indicators I = ((I11, . . . , I1t), (I21, . . . , I2t)),

yield deviations
(
(ψ̂1,0, . . . , ψ̂1,t−1), (ψ̂2,0, . . . , ψ̂2,t−1)

)
and data e = (e1, . . . , et),

the data can be split into sets based on times with shocks. Let Ai = {t|Iit = 1},
i = 1, 2, and Ā = {s|Iis = 0, i = 1, 2}.

Consider the statistics on increments e for the subsamples: (i) the number of

values nAi , i = 1, 2, nĀ; (ii) means - ξ̂Ai , i = 1, 2, ξ̂Ā; (iii) covariance matrices
SAi , i = 1, 2, SĀ. The subsample statistics are the basis of maximum likelihood
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estimates for parameters. The conditional likelihood for the diffusion and shock
size parameters is

L(Θ,Ξ|I, ψ̂, e) =

= (2π)−t|
t∏

s=1

Σs(I)|−
1
2 exp

{
−1

2

t∑
s=1

(es − ξs(I))
′Σ−1

s (es − ξs(I))

}
. (20)

The function l(Θ,Ξ|I, ψ̂, e) = ln
(
L(Θ,Ξ|I, ψ̂, e)

)
is solved iteratively for

conditional maximum likelihood estimates. The structure in the covariance ma-
trix is important for model fitting. Consider Γ ′ = (γ1, γ2) and

∆s(Is) =

[
δ21 0
0 δ22 +

∑
η21kI1s +

∑
η22kI2s

]
.

ThenΣs(I) = ΓΓ ′+∆s(Is). This decomposition of the covariance matrix into
a matrix determined by common market factors and a matrix of specific variances
will be important in the estimation of parameters. For a given covariance matrix,

Σ =

[
σ2
1 σ12

σ12 σ2
2

]
, it is possible to write the solution to the structural equation:

Γ ′ =
(√
ρσ1,

√
ρσ2

)
, ∆ = diag((1 − |ρ|)σ2

1 , (1 − |ρ|)σ2
2), where ρ = σ12

σ1σ2
. So

estimates for the covariance naturally lead to estimates for the parameters Γ
and ∆.

With a given sequence of shocks, we can estimate (ϕ1k, β1k, ϕ2k, β2k) using
the Weibull distribution. The power law intensity (Weibull) implies that the
stress measure is the driving force in the occurance of a shock.

Consider the data on stress measures πi at the actual shock times I,

xi =
{
xi1, . . . , xinAi

}
, i = 1, 2.

With this data, consider the likelihood equations

G(βik|xi) = nAi

nAi∑
j=1

xβik

ij +

nAi∑
j=1

ln(xij)

 nAi∑
j=1

βikx
βik

ij −nAi

nAi∑
j=1

β2
ikx

βik−1
ij , i = 1, 2.

The conditional maximum likelihood estimates for the Weibull parameters

(ϕi, βi) are (ϕ̂i, β̂i), where G(β̂ik|xi) = 0 and ϕ̂ik =

∑nAi
j=1

x
β̂ik
ij

nAi
, i = 1, 2.

All estimation routines were programmed in Matlab.

4 Market fitting

Data on the stock and bond markets in the United States are now analyzed
using the proposed model for asset prices. The objectives are to determine: (i)
if the risk process improves the fitting of a model to an actual price trajectory;
(ii) if the components of the risk process depend on the risk factors: bond-stock
yield differential and volatility index.
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It is proposed that GBM is supplemented with a risk process, which depends
on yields and volatility. Figure 1 displays the path of the bond-stock yield ratio
and the VIX. The time covered is from 1990 when VIX was first introduced. In
both graphs the mean is plotted to give an indication of stable levels. Notice the
diverging paths of the yield ratio and the VIX during the year 2007: rapidly de-
creasing interest rates in the US have driven down the yield ratio while the equity
market implied volatility was increasing and thus anticipating the instability to
come.
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Fig. 1. Risk factors: January 1990 - December 2007

4.1 Single stress measure

The estimated parameters for the model using conditional maximum likelihood
with single stress measures generated by separate combinations of the yield ratio



Risk indicators in equity markets 111

and VIX as risk factors are given in Table 1 and Table 2. The purpose in this
analysis is to understand the individual effects of combinations of factors.

Table 1. Diffusion parameter estimates

w

Parameter 1.00 0.75 0.50 0.25 1.00

µ1 0.0000 0.0000 0.0000 0.0000 0.0000

µ2 0.0006 0.0005 0.0004 0.0003 0.0004

γ1 0.0004 0.0021 0.0037 0.0014 0.0016

γ2 -0.0011 -0.0002 -0.0001 0.0001 0.0016

δ1 0.0042 0.0036 0.0020 0.0039 0.0039

δ2 0.0094 0.0095 0.0097 0.0095 0.0063

Table 2. Parameter estimates for risk process

w

Shock Parameter 1.00 0.75 0.50 0.25 0.00

UP θ10 -0.0044 -0.0163 -0.0354 0.0117 -0.0072

θ11 0.0093 0.0446 0.1181 0.0086 0.0750

η1 0.0000 0.0000 0.0000 0.0069 0.0051

ϕ1 1.6115 1.4852 1.4561 1.3707 1.2831

β1 16.1342 18.7659 23.6526 47.7722 20.7511

DOWN θ20 -0.0008 0.0112 -0.0016 0.1305 0.0056

θ21 -0.0007 -0.0416 -0.0241 -0.0591 -0.0717

η2 0.0057 0.0057 0.0000 0.0035 0.0055

ϕ2 1.4539 1.4330 1.4202 1.3338 1.2738

β2 9.4330 17.9974 57.0399 94.5792 21.5550

The estimates are somewhat similar across the various combinations. In all
cases the dependence of the shock intensity on the stress measure is strong
(βik ≫ 1). The fitted accumulated increments (log-prices) for the models with
the combinations of yield ratio and VIX are given in Figure 2. These fits are
actually predictions. That is, with the estimated parameters from in-sample data,
a backcast/forecast was performed for the entire study 1990 - 2007. Starting fron
January 1, 1990, the predicted/expected increments were calculated as:

˜∆Y2(t) = µ̂2 + θ̂10 + θ̂11E(∆N1(λ(π̂1(t− 1)))) + θ̂20 + θ̂21E(∆N2(λ(π̂2(t− 1)))),

where E(∆Ni(λ(π̂i(t − 1)))) is the probability of an up/down shock in period
t calculated from the Poisson distribution with intensity based on the stress in
period t.
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Fig. 2. Fitted prices for the in-sample daily data

In most cases the fits are good, with the risk process capturing the bubble
effect of strong growth in stock prices followed by a collapse.

The weights which gave the best fit were: w = 0.0, 1−w = 1.0. These weights
were the same for up and down shocks. Although the VIX factor is best overall,
the dominance is not uniform over the time period. In some time points, the
BSYD (w = 1.0, 1− w = 0.0) is closer to the actual stock price trajectory.

A comparison of the mean squared errors for the models with the yield ratio,
the VIX and combinations as risk factors is given in Table 3. The actual SP500
index and the market dynamics implied by the bond yield differential, the VIX
and the combinations of the two are reported in Figure 2.

Table 3. Performance comparison: BSYD and VIX combinations

Combination 1.00 0.75 0.50 0.25 0.00

RMSE 0.1897 0.2300 0.3391 0.3050 0.1770

LogLikelihood 34124 34147 34161 34205 35551

These calculations from the full trajectory indicate the dominance of the VIX.
There are important points following from the analysis of stock prices with the
model containing a diffusion and a risk process based on a single stress measure:

(i) The inclusion of a marked point process (or risk process) to the diffusion
provides a closer match to the dynamics of prices in the US market.
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(ii) When they are considered separately, the bond-stock yield ratio and the
volatility index are more significant as risk indicators of the extreme price
movements associated with bubbles. The VIX is the single best stress mea-
sure.

(iii) When the stress is defined by combination of the factors, the results are
weaker due to an averaging effect, which produces fewer extreme values on
the stress measure.

4.2 Multiple stress measures

With the evidence that the factors can be considered individually as stress mea-
sures, the multiple stress model is estimated. With both BSYD and VIX in-
cluded, it is appropriate to work with weekly data, since the BSYD is reported
weekly. The best fitting multiple stress model in our analysis is pictured in Figure
3.
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Fig. 3. Fitted prices from multiple stress model for weekly in-sample data

The fit is an improvement over the single stress measure models. The es-
timated parameters in the fitted model are provided in table 4. For the size
estimates, p-values are also reported: (estimate, p-value). The intensity esti-
mates include a confidence interval: (estimate, 95% confidence interval). Tests
on standard deviations are not included.

The size parameter estimation included both risk factors. The estimates for
the intensity parameters were computed based on the VIX alone, as the size
coefficient for the BYSD is negligible. The test results shown in the p-values
indicate the statistical significance of the risk factors in the full model. Therefore,
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Table 4. Parameter estimates for stress associated components

Market Scenarios Size Parameters Intensity Parameters

UP

θ10 : (−0.0096, 0.1208)
ϕ1 : [1.3715, (1.3563, 1.3867)]

θ11 : (0.0136, 0.1448)
θ12 : (0.1239, 0.0000)

β1 : [33.0178, (25.8816, 42.1152)]
σ1 : (0.0163,*)

DOWN

θ20 : (0.0062, 0.0000)
ϕ2 : [1.3160, (1.3058, 1.3262)]

θ21 : (0.0000, 0.9994)
θ22 : (−0.1226, 0.0000)

β2 : [35.5460, (29.6528, 42.6104)]
σ2 : (0.0182, ∗)

the traditional geometric Brownian motion model is rejected in favor of the risk
process with jumps.

4.3 Prediction

The in-sample fitting for the model with the data from 1990 - 2007 is very good,
and the obvious issue is the predictability of stock price movements using the
fitted model. The estimated model was used to produce weekly forecasts of prices
for the period January, 2008 to June 30, 2008. Weekly values for BSYD and VIX
are used to produce one week ahead forecasts for shock sizes and probabilities,
and the expected shock sizes are added to the Brownian motion increments. The
weekly price changes are combined to give the trajectory in Figure 4.
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Fig. 4. Out-of-sample forecast: January 02, 2008 - April 21, 2009



Risk indicators in equity markets 115

The forecast follows the pattern of the actual trajectory, although the pre-
diction at the beginning of the period is a bit higher than the actual.

5 Market implications

We have presented a novel approach to study short and medium term equity
market returns employing a general random process with a discontinuous com-
ponent driven by a set of underlying risk sources. The model development rests
on the general view that observable market dynamics are to a certain extent
motivated by diverging expectations over forthcoming economic and corporate
conditions and that a set of stressed factors may induce a sudden market reversal
characterized by a change of the correlation structure in the market. As shown
in the previous section this view is strongly supported by the achieved market
fits. Both instability factors employed in our study are driven by expectations
on forward market movements. The approach does not assume the existence of
a theoretical equity market fair value but only a potential relative misvaluation
given current equity and bond prices.

The bond-yield differential focuses on expected in-outflows from the equity
into the bond market, and vice versa, induced by diverging equity and bond
yields, resulting in a measure of over-under valuation of the equity market. It
is worth remarking that according to the so called Fed model [12] the default
free 10 year rate is adopted as a perpetual discount factor of future earnings.
Under these assumptions a market increase (decrease) is determined by increas-
ing earnings expectations and decreasing interest rates and an expansion of the
credit available in the economy. Similarly a market adjustment will be induced
by a sudden revision of earnings expectations associated with an increase of the
term structure of interest rates. The above sequence of events is consistent with
a possibly very serious market crisis if positive market returns contribute to im-
prove conditional expectations and a restrictive monetary policy turns out to
be insufficient over a prolonged period of time to induce a revision of market
expectations. This is exactly the sequence of events that anticipated the 1987
market crisis as well as the 2000 dot com crisis.

The volatility index, generated by possibly the most liquid market in the
world, reflects expected changes in market forward volatility. This turns out to
follow closely the US market reversals. The evidence is in this case: low implied
volatility in the option market, positive credit cycle, positive market expecta-
tions and positive equity returns. High implied volatility with respect to a 15
year average, unstable expectations, growing market uncertainty, investors’ hori-
zon contractions and sudden market adjustments. The latter is also conditional
on recent market performance. Market uncertainty is better captured by the
volatility index and the stylized evidence of negative market turns after periods
of relatively high market volatility is confirmed. The volatility index appears also
to provide an effective mapping between leverage-based growth strategies and
future corporate performance. Notably, according to the structural approach to
credit risk, high implied volatility at an aggregate level implies increasing credit
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spreads in the corporate market, reduced earning expectations and, in presence
of high leverage after a prolonged period of market growth, anticipates a market
reversal. The recent 2007 credit crisis was accurately captured by the index that
started around 11% in January 2007, reaching 25% in mid August 2007, where it
still is in June 2008! The correlation with the S&P 500 is remarkable. We have in
this case a joint signal of credit crunch and negative stock market performance.

In either case, the inclusion of the risk process with random intensity and
shock measure facilitates the definition of a risk premium directly associated
with such factors and supports the view that equity markets do on average offer
a higher expected return than fixed income instruments.

The risk process, driven by market instability factors, clearly captures the
swings in stock price trajectories around the standard diffusive process. This
supports the intuition about investor behavior when faced with risk. The addi-
tion of the risk process to the price model has corresponding implications for the
premium on risk for securities. If the average daily returns on stocks and long
bonds are calculated for the 1990 - 2006 period, the results are µ̂2 = 0.00038,
and µ̂1 = 0.00036, which give annualized rates of 1.10 and 1.09, respectively.
On that basis the premium for stocks is negligible. With the addition of the risk
process, the diffusive returns are µ̃2 = 0.00059 and µ̃1 = 0.00036. The annualized
returns are 1.16 and 1.09 for stocks and bonds respectively. The volatility in the
risk process is a part of the premium and increases it to 7%.

In this respect national equity markets will possibly have associated different
instability factors and more importantly different risk premia: the higher the
correlation between equity markets, the more homogenous the risk structure of
equity premia.

6 Conclusions

This paper studies the nature of jumps in equity returns in financial markets.
It is proposed that jumps significantly improve the fitting of equity returns, and
furthermore the essential features of jumps are affected by current market condi-
tions. That is, the rate of jumps and the size of jumps are variables depending on
certain observable risk factors. The model is tested with data on equity returns
and the factors: bond stock yield differential, volatility index. From the results
of this study the following conclusions are reached.

1. The addition of non-homogeneous point processes to a diffusion greatly im-
proves the fitting to actual equity returns.

2. Both the intensity of jumps and the size of jumps depend on the risk factors
- BSYD, VIX.

3. The VIX and BSYD are somewhat complimentary in that during some peri-
ods the dependence on the VIX is more pronounced, while in other periods
the dependence on the BSYD is clearer.

4. Because of the complementarity, risk measures based on combinations of the
factors average out or smooth the extremes and result in a low frequency of
shocks and a poorer fit.



Risk indicators in equity markets 117

A model which anticipates extreme price movements is a key ingredient in a
stochastic control model for decisions on investments in risky assets. As such,
the risk process model in this paper is a reasonable foundation for a decision
model which controls the risk of large losses.
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