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Abstract. Many problems from the area of economics and finance can
be described using dynamical models. If time is the only independent
variable and for which we work in a continuous framework, these mod-
els take the form of differential equations (DEs). These models can be
studied through the direct problem and the inverse problem. The inverse
problem consists of estimating the unknown parameters of the model
starting from a set of observational data. We use fractal-based methods
to get them. The method will be illustrated through several numerical
examples and applications to economical and financial situations.
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1 Introduction

Many problems from the area of economics and finance can be described using
dynamical models. For them, in which time is the only independent variable
and for which we work in a continuous framework, these models take the form
of deterministic differential equations (DEs). We may study these models in
two fundamental ways: the direct problem and the inverse problem. The direct
problem is stated as follows: given all of the parameters in a system of DEs,
find a solution or determine its properties either analytically or numerically.
The inverse problem reads: given a system of DEs with unknown parameters
and some observational data, determine the values of the parameters such that
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the system admits the data as an approximate solution. The inverse problem is
crucial for the calibration of the model; starting from a series of data we wish
to describe them using differential equations in which the parameters have to
be estimated from data samples. The solutions to the inverse problems are the
estimations of the unknown parameters and we use fractal-based methods to get
them.

The paper is organized as follows: in sections 1 and 2 we present the ba-
sic results concerning the solution of inverse problems for fixed point equations
through the so called “collage theorem.” We then present some numerical ex-
amples: in section 3 and 4 we analyze inverse problems for two economic models
arising in the contexts of technological change and resource management, and
in section 5 we show how one can use the “collage method” for solving inverse
problems for a class of stochastic differential equations.

2 Fixed point equations and inverse problems through
the “collage theorem”

For the benefit of the reader, we now mention some important mathematical
results which provide the basis for fractal-based approximation methods. Let us
consider the fixed point equation x = Tx, where (X, d) is a complete metric
space and T a contractive operator on X. The direct problem for a fixed point
equation can be solved through the classical Banach theorem.

Theorem 1. (Banach) Let (X, d) be a complete metric space. Also let T : X →
X be a contraction mapping with contraction factor c ∈ [0, 1), i.e., for all x, y ∈
X, d(Tx, Ty) ≤ cd(x, y). Then there exists a unique x̄ ∈ X such that x̄ = T x̄.
Moreover, for any x ∈ X, d(Tnx, x̄) → 0 as n → ∞.

A simple triangle inequality along with Banach’s theorem yields the following
fundamental result.

Theorem 2. (“Collage Theorem” [2,1]) Let (X, d) be a complete metric space
and T : X → X a contraction mapping with contraction factor c ∈ [0, 1). Then
for any x ∈ X,

d(x, x̄) ≤ 1

1− c
d(x, Tx), (1)

where x̄ is the fixed point of T .

The inverse problem is: given a target element y, can we find an operator T
with fixed point x̄ so that d(y, x̄) is sufficiently small. Thanks to the “Collage
Theorem”, most practical methods of solving the inverse problem for fixed point
equations seek to find an operator T for which the collage distance d(y, Ty) is
as small as possible.

We now consider the case of random fixed point equations. Let (Ω,F , P ) be
a probability space. A mapping T : Ω ×X → X is called a random operator if
for any x ∈ X the function T (·, x) is measurable. The random operator T is said
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to be continuous/Lipschitz/contractive if, for a.e. ω ∈ Ω, we have that T (ω, ·)
is continuous/Lipschitz/contractive ([11]. A measurable mapping x : Ω → X is
called a random fixed point of the random operator T if x is a solution of the
equation

T (ω, x(ω)) = x(ω), a.e.ω ∈ Ω. (2)

We are concerned about the existence of solutions to such equations. Consider
the space Y of all measurable functions x : Ω → X. If we define the operator
T̃ : Y → Y as (T̃ y)(ω) = T (ω, x(ω)) the solutions of this fixed point equation
on Y are the solutions of the random fixed point equation T (ω, x(ω)) = x(ω). If
the metric d is bounded then the space (Y, dY ) is a complete metric space (see
[4]) where

dY (x1, x2) =

∫
Ω

dX(x1(ω), x2(ω))dP (ω). (3)

The following result follows from the completeness of (Y, dY ) and Banach’s fixed
point theorem. It states sufficient conditions for the existence of solutions.

Theorem 3. Suppose that

(i) for all x ∈ Y the function ξ(ω) := T (ω, x(ω)) belongs to Y ,
(ii) dY (T̃ x1, T̃ x2) ≤ cdY (x1, x2) with c < 1.

Then there exists a unique solution of T̃ x̄ = x̄, that is, T (ω, x̄(ω)) = x̄(ω) for
a.e. ω ∈ Ω.

The inverse problem can be formulated as: given a function x̄ : Ω → X and a
family of operators T̃a : Y → Y find a such that x̄ is the solution of random
fixed point equation

T̃ax̄ = x̄, (4)

that is,
Ta(ω, x̄(ω)) = x̄(ω). (5)

The collage theorem can also be reformulated for this setting, using the same
hypotheses as in Theorem 3. In both theorems, hypothesis (i) can be avoided if
X is a Polish space.

3 An inverse problem for a technological competition
model

A classical technological competition model can be formulated ([10]) as

dx1

dt
(t) = f1(x1, x2) =

a1
K1

x1 (K1 − x1 − α2x2)

dx2

dt
(t) = f2(x1, x2) =

a2
K2

x2 (K2 − x2 − α1x1) ,

where all of the parameters are positive and a1, a2, α1 and α2 are less than one.
Observe that the nonnegative quadrant is invariant. This means that if we start
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with (x1(0), x2(0)) ≥ (0, 0) then we have (x1(t), x2(t)) ≥ (0, 0) for all time. That
is, in the applied meaningful cases, x1 and x2, as determined by our model, are
always nonnegative. The linearization of the vector field (f1, f2) is

Df(x1, x2) =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
=

(
a1 − a1

K1
(2x1 + α2x2) −a1α2x1

K1

−a2α1x2

K2
a2 − a2

K2
(2x2 + α1x1) .

)
Solving for equilibria, we obtain

(0, 0), (0,K2), (K1, 0), and (x⋆
1, x

⋆
2) =

(
K1 − α2K2

1− α1α2
,
K2 − α1K1

1− α1α2

)
.

And so, evaluating the linearization at each of the equilibrium points, we calcu-
late that

Df(0, 0) =

(
a1 0
0 a2

)
.

Since Df(0, 0) is positive definite, we know that (0, 0) is an unstable equilibrium
(a source). On the other hand, at the next two points we obtain

Df(0,K2) =

( a1

K1
(K1 − α2K2) 0

−a2α1 −a2

)
and

Df(K1, 0) =

(
−a1 −a1α2

0 a2

K2
(K2 − α1K1)

)
.

Each matrix has one negative eigenvalue, with the sign of other one determined
by a relationship between K1, K2, and one of the αis. All three of these equi-
librium points have at least one component equal to zero, corresponding to one
of the competing technologies begin eliminated from the market. The origin is a
special equilibrium point, in that we only arrive at it if we start at it: if neither
of the two technologies is present at the start, both of them will never appear.
The equilibrium (0,K2) corresponds to technology x2 triumphing over technol-
ogy x1. The single negative eigenvalue corresponds to the case that the market
only has technology x2 at the start. x1 never appears, so we arrive at an equilib-
rium state where technology x2 is the only one in the market. In the case that
K1 − α2K2 < 0, it is possible for a market with both technologies present to
approach a state where x2 has eliminated x1. If K1 − α2K2 > 0, then we can
never reach (0,K2) if we start with both technologies present. Similar remarks
can be made about (K1, 0). However, notice that if we try to make both of these
boundary equilibria stable, we require both K1−α2K2 < 0 and K2−α1K1 < 0,
which means that

K1 < α2K2 < α2(α1K1) ⇒ 1 < α1α2.

But this is a contradiction if both αis are less than one. As a result, we can
make at most one of the nontrivial boundary equilibria stable. The final and
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most interesting equilibrium point can correspond to coexistence of the two
technologies in the case that both x⋆

1 and x⋆
2 are positive. This situation occurs

when

K1 − α2K2 > 0 and K2 − α1K1 > 0. (6)

These conditions are familiar, corresponding to the case when both boundary
equilibria cannot be reached by interior solutions. In this case, we calculate that

Df(x⋆
1, x

⋆
2) =

(
− a1

K1

K1−α2K2

1−α1α2
−a1α2

K1

K1−α2K2

1−α1α2

−a2α2

K2

K2−α1K1

1−α1α2
− a2

K2

K2−α1K1

1−α1α2

)
,

with determinant

a1a2
(K1 − α2K2)(K2 − α1K1)

K2K1(1− α1α2)
> 0.

Since the determinant is positive and (Df(x⋆
1, x

⋆
2))11 < 0, we conclude that if

we are in the case where our system exhibits a positive equilibrium then it is
asymptotically stable—in fact with basis of attraction the positive quadrant!
Notice that if either inequality in (6) is replaced by the corresponding equation
then our equilibrium point coalesces with one of the boundary equilibria. If either
inequality is in fact negative, then the equilibrium point we are discussing is not
physically realizable.

Figure 1 presents a solution trajectory in the case that K1 = 320, K2 = 100,
α1 = 0.2, α2 = 0.5, a1 = 0.3, and a2 = 0.6. Note that the inequalities in (6) are
satisfied.

Fig. 1. All solution trajectories starting in the positive quadrant approach the positive
equilibrium because (6) holds
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Figure 2 presents a solution trajectory in the case that K1 = 125, K2 = 320,
α1 = 0.2, α2 = 0.5, a1 = 0.3, and a2 = 0.6. In this case, we have no positive
equilibrium, but the equilibrium point (0, 320) is asymptotically stable.

Fig. 2. All solution trajectories starting in the positive quadrant approach (0,K2) in
this case

The inverse problem of interest to us is: given observed values x1(ti) and
x2(ti) for 1 ≤ i ≤ N , say, approximate the values of the parameters a1, a2, α1,
α2, K1, and K2.

In [9], [3], [7], [8], [6], the collage theorem presented in Section 2 is used to
solve such an inverse problem. Starting from the differential equation,

ẋ = f(t, x), x(0) = x0, (7)

we consider the Picard integral operator associated with it,

(Tx)(t) = x0 +

∫ t

0

f(s, x(s)) ds. (8)

If f is Lipschitz in the variable x, that is, |f(s, x1) − f(s, x2)| ≤ K|x1 − x2|,
then T is Lipschitz on the space C([−δ, δ] × [−M,M ]) with Lipschitz constant
c = δK [9]. Thus, for δ sufficiently small, T is contractive with respect to the L2

metric. Now let δ′ > 0 be such that δ′K < 1. Let {ϕi} be a basis of functions in
L2([−δ′, δ′]× [−M,M ]), then

fa(s, x) =
+∞∑
i=1

aiϕi(s, x). (9)
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Each sequence of coefficients a = {ai}+∞
i=1 , then defines a Picard operator Ta.

Suppose further that each function ϕi(s, x) is Lipschitz in x with constants Ki.

Theorem 4. [9] Let ∥K∥2 =
(∑+∞

i=1 K2
i

) 1
2

and ∥a∥2 =
(∑+∞

i=1 a2i

) 1
2

. Then

|fa(s, x1)− fa(s, x2)| ≤ ∥a∥2∥K∥2|x1 − x2| (10)

for all s ∈ [−δ′, δ′] and x1, x2 ∈ [−M,M ].

Given a target solution x(t), we now seek to minimize the collage distance ∥
x− Tax ∥2. The square of the collage distance becomes

∆(a)2 = ∥x− Tax∥22 =

∫ δ

−δ

∣∣∣∣∣x(t)−
∫ t

0

+∞∑
i=1

aiϕi(s, x(s))ds

∣∣∣∣∣
2

dt (11)

and the inverse problem can be formulated as

min
a∈Λ

∆(a), (12)

where Λ = {a ∈ R+∞ : ∥K∥2∥a∥2 < 1}. The minimization may be performed by
means of classical minimization methods on a subspace of finite dimension. Of
course, the approximation error goes to zero when the dimension goes to infinity.

We apply this approach to our technological competition model inverse prob-
lem. We use collage coding, finding the system of the form

dx1

dt
(t) = b1x1 + c1x

2
1 + d1x1x2 (13)

dx2

dt
(t) = b2x1 + c2x

2
2 + d2x1x2 (14)

for which the corresponding L2 collage distance is minimized. Having found the
coefficients bi, ci, and di, i = 1, 2, we obtain the approximation of the physical
parameters via

ai = bi, Ki = −bi
ci
, and α2 =

d1
c1

, α1 =
d2
c2

.

Example 1. We set K1 = 125, K2 = 320, α1 = 0.2, α2 = 0.5, a1 = 0.3, and
a2 = 0.6, and solve numerically the system of differential equations. We gather
observed data by adding low amplitude Gaussian noise to sampled values of
the numerical solution. For x1(t), we gather 100 sample values at the times
t = i

100 , 0 ≤ i ≤ 99; we add normally distributed noise with distribution noise1.
We fit a piecewise tenth-degree polynomial to each consecutive set of ten data
points to produce our target function for x1(t). We follow the same procedure
to produce a target function for x2(t), this time with noise distribution noise2.
Finally, we minimize the collage distance to recover values of bi, ci, di, and xi0,
from which we recover the approximations of ai, Ki, and αi, i = 1, 2. The results
(to five decimal places) obtained for different noise distributions are presented
in Table 1. The values in the table are quite close to the true values, with the
accuracy decreasing as the noise is increased.



86 Herb Kunze et al.

Table 1. Collage Coding Results for the Technological Competition Model

noise1 noise2 a1 K1 α1 a2 K2 α2

N (0, 0.02) N (0, 0.04) 0.28235 123.72647 0.17625 0.58718 319.86466 0.50565
N (0, 0.10) N (0, 0.15) 0.26212 122.09029 0.15334 0.57498 319.74032 0.51273
N (0, 0.30) N (0, 0.20) 0.23672 119.72296 0.14602 0.57147 319.69409 0.52283
N (0, 0.50) N (0, 0.45) 0.22304 118.25901 0.11801 0.55675 319.55805 0.52880
N (0, 0.80) N (0, 0.75) 0.20793 116.46787 0.09335 0.54418 319.44395 0.53596
N (0, 1.00) N (0, 1.00) 0.20028 115.47621 0.07632 0.53568 319.36985 0.53980
N (0, 2.00) N (0, 2.00) 0.17142 111.14858 0.02406 0.51072 319.15910 0.55635

4 An inverse problem for an economic resource model

We consider a common access fishery model,

ȧ(t) = γ(p̄Hb(t)− c̄)a(t)

ḃ(t) = B(b̄− b(t))b(t)−Ha(t)b(t),

where the first equation models fishing effort by the fishermen, quantified by the
number of boats on the water, and the second equation models the fish popu-
lation. (With some tweaking, this model is the equivalent to the self-regulating
predator-prey model found in biomathematics. Here, the fish are analogous to
the prey and fishermen (or boats) to the predators.)

This model is referred to as a “common access” model because there are no
barriers to entry. That is, fishermen are free to enter and exit the industry as
they wish without penalty, cost, legal restriction, or any other stipulations which
make entry difficult. In practice, we have entry so long as profits are positive.
In the case of zero profits, we will neither have entry nor exit until other factors
influence the dynamics of interaction between our players, the fish and fishermen.
For instance, if there is suddenly a large number of fish, more fishermen will enter
the industry in hopes of realizing potential gains from profit. The meaning of
each term in our model is given in the following list:

a(t) = number of boats at time t

b(t) = number of fish at time t

b̄ = sustainable fish population, b̄ > 0

B = scaling term =
growth rate of fish

b̄
, 0 < B < 1

H = technological constant, converts effort into catch, 0 < H < 1

c̄ = marginal constant cost per boat, c̄ > 0

p̄ = market price per fish, p̄ > 0

R = pHb(t)a(t) = total industry revenue at time t, R > 0

E = R− ca(t) = industry profits at time t, E > 0

γ = scaling term, γ > 0
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γc = rate at which fishermen leave the water, c > 0.

In the first equation, c̄a(t) is the total cost of the boats per unit time, at
time t. The product p̄Hb(t)a(t) is the total revenue per unit time. The difference
p̄Hb(t)a(t) − c̄a(t) is the profit at time t. The first equation says that the rate
of change of the fishing effort is proportional to the profit. The first term of
the left hand side of the second equation, B(b̄− b(t))b(t), is in the usual logistic
form, describing the natural dynamics of the fish population. The bracketed term
(b̄−b(t)) is the element which makes this model self-regulating. The second term,
Ha(t)b(t), represents the total harvest.

We find that the model has three equilibria

(0, 0), (0, b̄), and (a⋆, b⋆) =

(
B

H

[
b̄− c̄

Hp̄

]
,

c̄

Hp̄

)
.

The final equilibrium corresponds to coexistence of the fish and fisherman pop-
ulations in the case that b̄− c̄

Hp̄ is positive. The linearization of the vector field
is

Df(a, b) =

(
γc̄ γp̄Ha

−Hb Bb̄− 2Bb−Ha

)
Evaluating at the origin, we have

Df(0, 0) =

(
γc̄ 0
0 Bb̄

)
.

We conclude that (0, 0) is unstable. At the equilibrium point (0, b̄), we find

Df(0, b̄) =

(
γc̄ 0

−Hb̄ −Bb̄

)
,

with eigenvalues of each sign. The equilibrium point is an unstable saddle point.
The stable ray of contraction on the b-axis corresponds to the fact that in the
absence of fishermen the fish population approaches the sustainable fish popu-
lation value, b̄. Finally, in the case b̄− c̄

Hp̄ > 0, at the positive equilibrium point

(a⋆, b⋆), we determine that

Df (a⋆, b⋆) =

(
0 γp̄B

(
b̄− c̄

Hp̄

)
− c̄

p̄ − Bc̄
Hp̄

)
.

We calculate that

det (Df (a⋆, b⋆)) = γc̄B

(
b̄− c̄

Hp̄

)
> 0

trace (Df (a⋆, b⋆)) = −Bc̄

Hp̄
< 0.

We conclude that the coexistence equilibrium is a stable sink.
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To illustrate the results, we set b̄ = 1000000, B = 7
480000 , H = 0.5, c̄ =

100000, p̄ = 2, γ = 1
20000 , and use the the initial values b0 = 100000 and a0 = 22

to generate the phase portrait in Figure 3.

Fig. 3. Left to right: graphs of a(t) versus t, b(t) versus t, and the phase portrait b(t)
versus a(t)

We are now interested in solving the inverse problems: given data values b(ti),
i = 1, . . . ,M and a(tj), j = 1, . . . , N , find values of the physical variables b, B,
H, c, p, and γ so that the solution to the system agrees approximately with the
data.

Example 2. To generate solution data, we set b̄ = 1000000, B = 7
480000 , H = 0.5,

c̄ = 100000, p̄ = 2, and γ = 1
20000 , solve numerically for b(t) and a(t), and sample

the solutions at uniformly-spaced times in [0, 1], adding low-amplitude Gaussian
noise with amplitude εb and εa, respectively. We fit piecewise polynomial tar-
get functions to these noisy data values and minimize the L2 collage distance
corresponding to the differential equations

ḃ(t) = c1b(t) + c2b
2(t) + c3a(t)b(t) (15)

ȧ(t) = c4a(t)b(t) + c5a(t). (16)

The results for different noise amplitudes are summarized in Table 2.
We observe that c1 = Bb̄, c2 = −B, c3 = −H, c4 = γp̄H, and c5 = −γc̄. If

we assume that p̄ = 2 is known, since it is the price determined by the market,
we can calculate the remaining parameters from the minimal collage distance
coefficient values. We obtain the results in Table 3. The values in the table lie
quite close to the true values.

5 An inverse problem for a class of stochastic differential
equations

Let us consider the following system of stochastic differential equations:{
d
dtXt = AXtdt+Bt,
x(0) = x0.

(17)
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Table 2. Minimal Collage Distance Coefficients for the Resource Model Inverse Prob-
lem

εb εa b0 a0 c1 c2 c3 c4 c5
0 0 100000 22.0000 14.5833 -0.00001 -0.5000 0.00005 -5.00000

0.05 0.02 100680 21.9916 14.5735 -0.00001 -0.4998 0.00005 -4.9535
0.08 0.04 101134 22.0046 14.5343 -0.00001 -0.4998 0.00005 -4.9128
0.10 0.06 101476 22.0279 14.4795 -0.00001 -0.4998 0.00005 -4.8755
0.15 0.05 101964 21.9608 14.5714 -0.00001 -0.4990 0.00005 -4.8661
0.20 0.10 102815 22.0237 14.4100 -0.00001 -0.4983 0.00005 -4.7674

Table 3. Minimal Collage Distance Parameter Values for the Resource Model Inverse
Problem

εb εa b0 a0 b̄ B H c̄ p̄ γ

0 0 100000 22.00 1000000 0.0000100 0.500 100000 2 0.0000500
0.05 0.02 100680 21.99 995241 0.0000146 0.500 99878 2 0.0000496
0.08 0.04 101134 22.01 1014389 0.0000143 0.500 99848 2 0.0000492
0.10 0.06 101476 22.03 1046756 0.0000138 0.500 99852 2 0.0000488
0.15 0.05 101964 21.96 971935 0.0000150 0.499 99543 2 0.0000489
0.20 0.10 102815 22.02 1056825 0.0000136 0.498 99455 2 0.0000479

where X : R × Ω → Rn, A is a (deterministic) matrix of coefficients and Bt is
a classical vector Brownian motion. An inverse problem for this kind of equa-
tion can be formulated as: given an i.d. sample of observations of X(t, ω), say
(X(t, ω1), . . . , X(t, ωn), get an estimation of the matrix A. For this purpose, let
us take the integral over Ω of both sides of the previous equation and suppose
that X(t, ω) is sufficiently regular; recalling that Bt ∼ N (0, t), we have∫

Ω

dx

dt
dP (ω) =

d

dt
E(X(t, ·)) = AE(X(t, ·)) (18)

This is a deterministic differential equation in E(X(t, ·)). From the sample of
observations of X(t, ω) we can then get an estimation of E(X(t, ·)) and then
use of approach developed for deterministic differential equations to solve the
inverse problem for A. The essential idea from [5] is that each realization x(ωj , s),
j = 1, . . . , N , of the random variable x(ω, s) is the solution of a fixed point
equation

x(ωj , s) =

∫ s

0

ϕ(ωj , t, x(ωj , t))dt+ x0(ωj)

=

∫ s

0

(a0(ωj) + a1(ωj)t+ a2(ωj)x(ωj , t)

+a3(ωj)t
2 + a4(ωj)tx(ωj , t) + a5(ωj)(x(ωj , t))

2 + · · ·
)
dt+ x0(ωj).

Thus, for each target function x(ωj , s), we can find the constant values x0(ωj)
and ai(ωj) via collage coding. Upon treating each realization, we will have de-
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termined x0(ωj) and ai(ωj), i = 1, . . . ,M , j = 1, . . . , N . We then construct the
approximations

µ ≈ µN =
1

N

N∑
j=1

x0(ωj) and νi ≈ (νi)N =
1

N

N∑
j=1

ai(ωj), (19)

where we note that results obtained from collage coding each realization are
independent. Using our approximations of the means, we can also calculate that

σ2 ≈ σ2
N =

1

N − 1

N∑
j=1

(x0(ωj)−µN )2, σ2
i ≈ (σi)

2
N =

1

N − 1

N∑
j=1

(ai(ωj)−(νi)N )2.

As a numerical example, we consider the first-order system

d

dt
xt = a1xt + a2yt + bt

d

dt
yt = b1xt + b2yt + ct

Setting a1 = 0.5, a2 = −0.4, b1 = −0.3, b2 = 1, x0 = 0.9, and y0 = 1,we construct
observational data values for xt and yt for ti =

i
N , 1 ≤ i ≤ N , for various values

of N . For each of M data sets, different pairs of Brownian motion are simulated
for bt and ct. Figure 4 presents several plots of bt and ct for N = 100.

Fig. 4. Example plots of bt and ct for N = 100

In Figure 5, we present some plots of our generated xt and yt, as well as
phase portraits for xt versus yt.

For each sample time, we construct the mean of the observed data values,
x∗
ti and x∗

ti , 1 ≤ i ≤ N . We minimize the squared collage distances

∆2
x =

1

N

N∑
i=1

x∗
ti − x0 −

1

N

i∑
j=1

(
a1x

∗
tj + a2y

∗
tj

)2
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Fig. 5. Example plots of xt, yt, and xt versus yt for N = 100

and

∆2
y =

1

N

N∑
i=1

y∗ti − y0 −
1

N

i∑
j=1

(
b1x

∗
tj + b2y

∗
tj

)2

to determine the minimal collage parameters a1, a2, b1, and b2. The results of
the process are summarized in Table 4.

Table 4. Minimal collage distance parameters for different N and M

N M a1 a2 b1 b2
100 100 0.2613 -0.2482 -0.2145 0.9490
100 200 0.3473 -0.3496 -0.2447 0.9709
100 300 0.3674 -0.3523 -0.2494 0.9462
200 100 0.3775 -0.3015 -0.1989 0.9252
200 200 0.3337 -0.3075 -0.2614 0.9791
200 300 0.4459 -0.3858 -0.2822 0.9718
300 100 0.4234 -0.3246 -0.2894 0.9838
300 200 0.3834 -0.3263 -0.3111 1.0099
300 300 0.5094 -0.4260 -0.3157 0.9965

6 Concluding Remarks

In this paper, we have considered three inverse problems drawn from applications
in economics and finance. The fundamental approach for solving the problems
is rooted in fractal-based analysis. The results in the paper demonstrate the
usefulness of the collage method. It is worth mentioning that the method does
not require significant computational power or time.
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