
Calibration of a multiscale stochastic volatility
model using European option prices⋆

Lorella Fatone1, Francesca Mariani2,
Maria Cristina Recchioni3, and Francesco Zirilli4

1 Dipartimento di Matematica e Informatica, Università di Camerino
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Abstract. In this paper we consider an explicitly solvable multiscale
stochastic volatility model that generalizes the Heston model, and pro-
pose a new model calibration based on a nonlinear optimization prob-
lem. The model considered was introduced previously by the authors in
[8] to describe the dynamics of an asset price and of its two stochastic
variances. The risk neutral measure associated with the model and the
risk premium parameters are introduced and the corresponding formu-
lae to price call and put European vanilla options are derived. These
formulae are given as one dimensional integrals of explicitly known in-
tegrands. We use these formulae to calibrate the multiscale model using
European option prices as data, that is, to determine the values of the
model parameters, of the correlation coefficients of the Wiener processes
appearing in the model and of the initial stochastic variances implied
by the “observed” option prices. The results obtained by solving the
calibration problem are used to forecast future option prices. The cali-
bration problem is translated into a suitable constrained nonlinear least
squares problem. The proposed formulation of the calibration problem is
applied to S&P 500 index data on the prices of European vanilla options
in November 2005. This analysis points out some interesting facts.
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1 Introduction

The use of stochastic volatility models to describe asset price dynamics originates
from empirical evidence that the price dynamics of assets are driven by processes
with nonconstant volatility. In fact, it is well known that difficulties arise when
models with constant volatility such as the Black and Scholes model [2] are
used to describe asset price dynamics. Examples of such difficulties are the so
called volatility “smile” that appears in the volatilities implied by the observed
option prices, and the presence of skewness and kurtosis in the approximate
asset price probability density function deduced from empirical data. Several
alternative models been proposed to overcome these shortcomings, including
“mean reverting” stochastic volatility models such as the Heston model [12].
The Heston model provides a satisfactory description of the price dynamics of
several relevant assets, as shown in [13] and [16]. Moreover the Heston model
is explicitly solvable in the sense that the joint probability density function
associated with the asset price and its stochastic variance can be written as a
one-dimensional integral of an explicitly known integrand. The Heston model is
a one-factor stochastic volatility model since the stochastic variance of the asset
price is modeled as a real stochastic process. However several empirical studies
of option price data have shown that the term structure of the implied volatility
of the prices of several assets (e.g., market indices and commodities) seems to be
driven by two factors, one fluctuating on a fast time scale and another fluctuating
on a longer time scale (see, for example, Alizadeh, Brandt, and Dielbold [1]). We
can conclude that, in some circumstances, one-factor stochastic volatility models
are unable to fully capture the volatility smile and volatility dynamics (see [9],
[6], [3], [5]). To overcome this inadequacy, several models that go beyond one-
factor stochastic volatility models have been proposed; we group these models
into two classes: multiscale stochastic volatility models [8], [11], [17] and jump
models [15], [4]. Here we will concentrate on the multiscale stochastic volatility
models. Several authors have devoted attention to such models, for example,
Fouque, Papanicolaou, Sircar and Solna [10] developed a multiscale stochastic
volatility model starting from ideas introduced in [1]. In [10], the proposed model
is calibrated on real data to capture the volatility smile, and an explicit series
expansion of the formula for the price of a European vanilla call option in the
model considered in [10] is given. More recently, Wong and Chan [17] proposed
a different multiscale stochastic volatility model and used it to price a long
term financial product called dynamic fund protection. Moreover they reported
a series expansion for the formula for the price of lookback options. Finally, the
authors proposed a new multiscale stochastic volatility model that generalizes
the Heston model and describes the dynamics of an asset price and of its two
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stochastic variances using a system of three Ito stochastic differential equations
[8]. The two stochastic variances vary on two different time scales. Under some
hypotheses, the proposed model provides “explicitly” solvable and “easy to use”
formulae to price in the model call and put European vanilla options can be
deduced.

In this paper, we consider the multiscale model proposed in [8] and we use the
formulae to price call and put European vanilla options deduced in [8] to solve
a calibration problem, and a forecasting problem. The calibration problem can
be stated as follows: given the observed prices of call and put European vanilla
options on a given asset traded on a given day, determine the model parameters,
the correlation coefficients of the Wiener processes appearing in the model and
the initial stochastic variances implied by the observed prices. We use these im-
plied values to forecast the prices of the options in the days following the day
whose option prices have been used as data in the calibration. We translate the
calibration problem into a constrained least squares optimization problem that is
a generalization of the optimization problem considered in [8]. In fact, in [8], the
objective function is defined using only the observed prices of the European call
options. Here the objective function is defined using the observed prices of both
call and put options. The new optimization problem formulated using both call
and put prices has some interesting consequences, discussed in Section 3, com-
pared to the optimization problem considered in [8]. In the numerical experiment
(see Section 3) we consider European vanilla options on the S&P 500 index and
we use the results of the calibration to forecast option prices. The forecasted op-
tion prices are compared to the observed prices; the results of this comparison are
very satisfactory. A more detailed discussion of the multiscale model and a more
extended analysis of the 2005 data relative to the S&P 500 and to its options in
the year 2005 can be found in [8]. The website: http://www.econ.univpm.it/rec-
chioni/finance/w7 contains auxiliary material including animations that assists
in the understanding of this paper. More general information on the work of
the authors and of their coauthors in mathematical finance can be found on the
website http://www.econ.univpm.it/recchioni/finance.

The remainder of the paper is organized as follows. In Section 2, we describe
the multiscale stochastic volatility model considered and, under some hypothe-
ses, we derive an integral representation formula for its transition probability
density function and for the price of European vanilla call and put options un-
der the risk-neutral measure. In Section 3, we formulate and solve a calibration
problem and a forecasting problem. We use observed option prices on the S&P
500 index to test the solution method of the calibration problem and the fore-
casting procedure. In Section 4, we present our conclusions.

2 The multiscale stochastic volatility model

Let R and R+ be sets of real and positive real numbers, respectively, and let t be
a real variable that denotes time. We consider the (vector valued real) stochas-
tic process (xt, v1,t, v2,t), t > 0, solution of the following system of stochastic
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differential equations:

dxt = (µ̂+ a1v1 + a2v2)dt+ b1
√
v1,tdW

0,1
t + b2

√
v2,tdW

0,2
t , t > 0, (1)

dv1,t = χ1(θ1 − v1,t)dt+ ε1
√
v1,tdW

1
t , t > 0, (2)

dv2,t = χ2(θ2 − v2,t)dt+ ε2
√
v2,tdW

2
t , t > 0, (3)

where the quantities µ̂, ai, bi, χi, εi, θi, i = 1, 2, are real constants. The quantity
µ̂ is known as the drift rate. Note that elementary considerations suggest that
we must require χi ≥ 0, εi ≥ 0, θi ≥ 0, i = 1, 2. Moreover we require 2χiθi

ε2i
> 1,

i = 1, 2. The condition 2χiθi
ε2i

> 1 guarantees that when vi,t is positive with

probability one at time t = 0, vi,t, the solution of (2), or of (3), remains positive

with probability one for t > 0, i = 1, 2. Finally W 0,1
t , W 0,2

t , W 1
t , W

2
t , t > 0 are

standard Wiener processes such that W 0,1
0 = W 0,2

0 = W 1
0 = W 2

0 = 0, and dW 0,1
t ,

dW 0,2
t , dW 1

t , dW
2
t , t > 0, are their stochastic differentials, and we assume that:

E(dW 1
t dW

2
t )= E(dW 0,1

t dW 2
t )= E(dW 0,2

t dW 1
t )= E(dW 0,1

t dW 0,2
t ) = 0, t > 0,(4)

E(dW 0,1
t dW 1

t ) = ρ0,1dt, E(dW 0,2
t dW 2

t ) = ρ0,2dt, t > 0,(5)

where E( · ) denotes the expected value of ·, and ρ0,1, ρ0,2 ∈ [−1, 1] are constants
known as correlation coefficients. Note that the autocorrelation coefficients of the
stochastic differentials are equal to one (see [8] for further details).

We interpret xt, t > 0, as the log-return of the asset price and v1,t, v2,t,
t > 0, as the stochastic variances of xt, t > 0. The fact that v1,t, v2,t, t > 0,
are stochastic variances on different time scales is translated in the condition
χ1 << χ2. With the above interpretation of (xt, v1,t, v2,t), t > 0, the assumptions
(4)-(5) appear natural.

Equations (1), (2) and (3) must be equipped with an initial condition, that
is:

x0 = x̃0, v1,0 = ṽ1,0, v2,0 = ṽ2,0, (6)

where x̃0, ṽi,0, i = 1, 2 are random variables that we assume to be concentrated
in a point with probability one. For simplicity, we identify the random variables
x̃0, ṽi,0, i = 1, 2, with the points where they are concentrated. Without loss of
generality, we can choose x̃0 = 0. Moreover we assume ṽi,0 ∈ R+, i = 1, 2. The
quantities ṽi,0, i = 1, 2 cannot be observed in real markets. Moreover, selecting
values of a1 = −1/2, a2 = 0, b1 = 1, b2 = 0 in equations (1), (2), (3) corresponds
to the fact that equations (1) and (2) are decoupled from equation (3), and that
these values give the Heston model. In this sense the model (1), (2), (3) is a
generalized version of the Heston model.

Let pf (x, v1, v2, t, x
′, v′1, v

′
2, t

′), (x, v1, v2), (x
′, v′1, v

′
2) ∈ R × R+ × R+, t, t′ ≥

0, t − t′ > 0, be the transition probability density function associated with
the stochastic differential system (1), (2), (3), that is, the probability density
function of having xt = x, v1,t = v1, v2,t = v2 given the fact that xt′ = x′,
v1,t′ = v′1, v2,t′ = v′2, when t− t′ > 0. The transition probability density function
pf (x, v1, v2, t, x

′, v′1, v
′
2, t

′), (x, v1, v2), (x
′, v′1, v

′
2) ∈ R×R+×R+, t, t′ ≥ 0, t−t′ >



Calibration of a multiscale stochastic volatility model 53

0, as a function of the variables (x, v1, v2, t) is the solution of the Fokker Planck
equation with suitable initial and boundary conditions (see [8] for further details)
and, as function of the variables (x′, v′1, v

′
2, t

′), satisfies the following backward
equation:

−∂pf
∂t′

=
1

2
(b21v

′
1 + b22v

′
2)
∂2pf
∂x′2 +

1

2
ε21v

′
1

∂2pf

∂v′
2

1

+
1

2
ε22v

′
2

∂2pf

∂v′
2

2

+ ε1b1ρ0,1v
′
1

∂2pf
∂x′∂v′1

+

ε2b2ρ0,2v
′
2

∂2pf
∂x′∂v′2

+ χ1(θ1 − v′1)
∂pf
∂v′1

+ χ2(θ2 − v′2)
∂pf
∂v′2

+ (µ̂+ a1v
′
1 + a2v

′
2)
∂pf
∂x′ ,

(x′, v′1, v
′
2) ∈ R× R+ × R+, 0 ≤ t′ < t, (7)

with the final condition:

pf (x, v1, v2, t, x
′, v′1, v

′
2, t) = δ(x′ − x)δ(v′1 − v1)δ(v

′
2 − v2),

(x, v1, v2), (x
′, v′1, v

′
2) ∈ R× R+ × R+, t ≥ 0,

(8)

and the appropriate boundary conditions (see [8], Section 2).
Letting τ = t − t′, we assume that the following integral representation

formula for pf (x, v1, v2, t, x
′, v′1, v

′
2, t

′), (x, v1, v2), (x
′, v′1, v

′
2) ∈ R × R+ × R+,

t′ ≥ 0, t > t′, holds:

pf (x, v1, v2, t, x
′, v′1, v

′
2, t

′) =

1

(2π)3
2

ε21

2

ε22

∫
R
dk eıkx

∫
R
dl1 e

2

ε21
ıl1v1

∫
R
dl2e

2

ε22
ıl2v2

f(τ, k, l1, l2, x
′, v′1, v

′
2),

(x, v1, v2), (x
′, v′1, v

′
2) ∈ R× R+ × R+, τ = t− t′ > 0, (9)

where ı is the imaginary unit, f is the Fourier transform of the function obtained
extending with zero the function pf defined above as a function of the variables
(x, v1, v2) when v1 /∈ R+ and/or v2 /∈ R+, and k, l1, and l2 are the conjugate
variables of x, v1, and v2 respectively (see [8], Section 2, for further details).
Using the arguments presented in [14] (pages 602-605), in [8] it was shown that:

f(τ, k, l1, l2, x
′, v′1, v

′
2) = e−ı k x′

eA(τ,k,l1,l2)e
− 2

ε21
v′
1B1(τ,k,l1)

e
− 2

ε22
v′
2B2(τ,k,l2)

,

(x′, v′1, v
′
2) ∈ R× R+ × R+, (k, l1, l2) ∈ R× R× R, τ > 0, (10)

where the functions A and Bi, i = 1, 2 are given by:

A(τ, k, l1, l2) = −ı kµ̂τ −
2∑

i=1

[
2χiθi
ε2i

(
(νi + ζi)τ + ln

(
(νi + ζi − ı li)e

−2ζiτ + (ı li − νi + ζi)

2ζi

))]
,

(k, l1, l2) ∈ R× R× R, τ > 0, (11)

Bi(τ, k, li) =
(νi − ζi)(νi + ζi − ı li)e

−2ζiτ + (νi + ζi)(ı li − νi + ζi)

(νi + ζi − ı li)e−2ζiτ + (ı li − νi + ζi)
,

(k, li) ∈ R× R, τ > 0, i = 1, 2, (12)
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where

νi = −1

2
(χi + ı k biεiρ0,i) , k ∈ R, i = 1, 2 , (13)

ζi =
1

2

(
4ν2i + ε2i (b

2
i k

2 + 2ı k ai)
)1/2

, k ∈ R, i = 1, 2 . (14)

Substituting equations (11) and (12) into equation (9) and integrating with
respect to the variables l1 and l2 we can derive a representation formula for
pf (x, v1, v2, t, x

′, v′1, v
′
2, t

′), that is, for the transition probability density function
of the stochastic process solution of (1), (2), (3), as a one dimensional integral
of an explicitly known integrand (see [8] for further details). The formulae for
pricing European vanilla call and put options with strike price K > 0 and
maturity time T are derived from (9) using the no arbitrage pricing theory,
that is, computing the option prices as expected values of a discounted payoff
with respect to an equivalent martingale measure, also known as a risk-neutral
measure (see for example [7], [15]). However to keep the exposition simple and
since we use as data in the formulation of the calibration problem only option
prices we can use to compute in the model the option prices the statistical
measure associated with the model (1), (2), (3) whose density is given by (9), that
is, we can incorporate the risk premium parameters into the parameters χi and
θi, i = 1, 2. In fact, in order to consider the risk neutral measure associated with
(1), (2), (3), we should simply replace the parameters χi, θi, i = 1, 2 appearing
in (1), (2), (3) with the parameters χ̃i = χi + λi, θ̃i = χiθi/(χi + λi), i = 1, 2,
where λi ∈ R, i = 1, 2 are the risk premium parameters (see [8] for more details)
and we should impose the constraints χ̃i ≥ 0, θ̃i ≥ 0, i = 1, 2. Now, writing the
transition probability density function pf as follows pf (x, v1, v2, t, x

′, v′1, v
′
2, t

′) =

p̃f (x, v1, v2, t, x
′, v′1, v

′
2, t

′)e−2(x−x′), (x, v1, v2), (x
′, v′1, v

′
2) ∈ R×R+ ×R+, t > 0,

t′ ≥ 0, t−t′ > 0, deriving a representation formula for p̃f (x, v1, v2, t, x
′, v′1, v

′
2, t

′),
(x, v1, v2), (x

′, v′1, v
′
2) ∈ R × R+ × R+, t > 0, t′ ≥ 0, t − t′ > 0, and using the

backward equation (7), we obtain the following formula for the price at time
t = 0 of a European vanilla call option with time to maturity τ = T − t > 0
(remember that t = 0) and strike price K, when at time t = 0 the price of the
underlying asset is given by S0 and the stochastic variances are given by ṽ1,0,
ṽ2,0:

C(τ,K, S0, ṽ1,0, ṽ2,0) =
S0

2π
e−rτe2µ̂τ

∫ +∞

−∞
dk

e−ık(log(S0/K)+µ̂τ)−log(K/S0)

−k2 − 3ı k + 2
·

2∏
i=1

(
e−2χiθi(ν

c
i +ζc

i +log(sci,b/(2ζ
c
i )))τ/ε

2
i e−2ṽi,0((ζ

c
i )

2−(νc
i )

2)sci,g/(ε
2
i s

c
i,b)

)
,

τ > 0, S0 > 0, ṽ1,0, ṽ2,0 > 0, (15)

where r is the discount rate and the quantities νci , ζ
c
i , s

c
i,b, s

c
i,g, i = 1, 2 are given

by:

νci = −1

2
(χi + ı k biεiρ0,i − 2biρ0,iεi) , k ∈ R, i = 1, 2, (16)
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ζci =
1

2

(
4(νci )

2 + ε2i (b
2
i k

2 + 2ı k ai + 4ı kb2i − 4(ai + b2i ))
)1/2

, k ∈ R, i = 1, 2 ,

(17)
sci,g = 1− e−2ζc

i τ , sci,b = ζci − νci + (ζci + νci )e
−2ζc

i τ , τ > 0, i = 1, 2. (18)

Note that because we work with the risk neutral measure, the discount rate r
must be chosen equal to µ̂ (see formula (14) in [12]). We note that the relation
between the log-return xt, t > 0 and the price St, t > 0, of the underlying asset
is xt = logSt/S0, t > 0.

The formula for the price at time t = 0 of a European vanilla put option
with time to maturity τ = T − t > 0, (remember that t = 0) and strike price
K, when at time t = 0 the price of the underlying asset is S0 and the stochastic
variances are ṽ1,0, ṽ2,0 is given by:

P (τ,K, S0, ṽ1,0, ṽ2,0) =
K

2π
e−rτe−µ̂τ

∫ +∞

−∞
dk

e−ık(log(S0/K)+µ̂τ)−log(S0/K)

−k2 + 3ı k + 2
·

2∏
i=1

(
e−2χiθi(ν

p
i +ζp

i +log(spi,b/(2ζ
p
i )))τ/ε

2
i e−2ṽi,0((ζ

p
i )

2−(νp
i )

2)spi,g/(ε
2
i s

p
i,b)

)
,

τ > 0, S0 > 0, ṽ1,0, ṽ2,0 > 0, (19)

where the quantities νpi , ζ
p
i , s

p
i,g, and spi,b, are given by:

νpi = −1

2
(χi + ı k biεiρ0,i + biρ0,iεi) , k ∈ R, i = 1, 2, (20)

ζpi =
1

2

(
4(νpi )

2 + ε2i (b
2
i k

2 + 2ı k ai − 2ı kb2i − 2(ai + b2i ))
)1/2

, k ∈ R, i = 1, 2 ,

(21)

spi,g = 1− e−2ζp
i τ , spi,b = ζpi − νpi + (ζpi + νpi )e

−2ζp
i τ , τ > 0, i = 1, 2. (22)

Note that the price of European call and put options at time t, 0 < t < T can
be deduced from (15) and (19) with some obvious changes.

3 Calibration and forecasting problems: some
experiments with real data

In this section, we conduct experiments on real data, using values of a1 = a2 =
− 1

2 and b1 = b2 = 1 in equations (1), (2), (3). Let Θ = (ϵ1, θ1, ρ0,1, χ1, ṽ0,1, µ̂, ϵ2,
θ2, ρ0,2, χ2, ṽ0,2) be a vector comprised of the parameters of the multiscale model
(note that the risk premium parameters can be included in the parameters χi, θi,
i = 1, 2), of the correlation coefficients, and of the initial stochastic variances. Let
mc, mp be two positive integers; we denote the data of the calibration problem

with Ct(S̃t, Ti,Ki), i = 1, 2, . . . ,mc, and, P
t(S̃t, Ti,Ki), i = 1, 2, . . . ,mp, that is,

the observed prices at time t of European vanilla call and put options, respec-
tively, having maturity time Ti and strike price Ki, i = 1, 2, . . . ,max(mc,mp),

when the price of the underlying asset at time t is S̃t. Moreover, we denote the
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prices of European vanilla call and put options obtained using (15) and (19) as
Ct,Θ(S̃t, Ti,Ki), i = 1, 2, . . . ,mc and P t,Θ(S̃t, Ti,Ki), i = 1, 2, . . . ,mp, respec-
tively, and choose the maturity time τ = τi = Ti − t, i = 1, 2, . . . ,max(mc,mp)

and the asset price S0 = S̃t. Note that usually when a call option is traded
for a couple Ti, Ki the corresponding put option is also traded and vice versa;
this is implicit in our assumption that it is possible to denote with Ti, Ki,
i = 1, 2, . . . ,max(mc,mp) the couple maturity time, strike price of the option
prices used as data. If necessary, our notation can be easily generalized to handle
the data that are actually available.

Fig. 1. November 7, 2005: European vanilla call and put option prices (V) on the S&P
500 index forecasted using the multiscale model and prices observed in the market
versus moneyness K/S0

Let R11 be the 11-dimensional real Euclidean vector space and let M be the
set of admissible vectors Θ, that is:

M = {Θ = (ϵ1, θ1, ρ0,1, χ1, ṽ0,1, µ̂, ϵ2, θ2, ρ0,2, χ2, ṽ0,2) ∈ R11

| εi χi, θi ≥ 0, i = 1, 2,
2χiθi
ε2i

≥ 1,−1 ≤ ρ0,i ≤ 1, ṽ0,i ≥ 0, i = 1, 2}, (23)
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at time t, t ≥ 0. We calibrate the model (1), (3), (2) by solving the following
constrained nonlinear least squares problem:

min
Θ∈M

Lt(Θ), t ≥ 0, (24)

where the objective function Lt(Θ), t ≥ 0, is defined as follows:

Lt(Θ) =

mc∑
i=1

[
Ct,Θ(S̃t, Ti,Ki)− Ct(S̃t, Ti,Ki)

]2
+

mp∑
i=1

[
P t,Θ(S̃t, Ti,Ki)− P t(S̃t, Ti,Ki)

]2
, t ≥ 0. (25)

The optimization problem (24) is a translation of the calibration problem for
the model (1), (2), (3) stated in Section 1.

Fig. 2. November 14, 2005: European vanilla call and put option prices (V) on the
S&P 500 index forecasted using the multiscale model and prices observed in the market
versus moneyness K/S0

We solve the optimization problem (24) using a projected steepest descent
method. This method is an iterative scheme that, starting from an initial vector
Θ0 ∈ M, generates a sequence {Θn}, n = 0, 1, . . ., of vectors Θn ∈ M, n =
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0, 1, . . ., moving along a descent direction obtained via a suitable projection on
the constraints of the vector given by the negative of the gradient with respect
to Θ of Lt. The procedure stops when the vector Θn generated satisfies for the
first time the following condition:

Lt(Θ
n) ≤ etol, or n > nmax, (26)

where etol, nmax are positive constants that will be chosen as outlined below.
Experiments using synthetic and real data that show the adequacy of a for-

mulation of the calibration problem similar to (23), (24), (25) and its ability to
capture satisfactorily the “smile” effect can be found in [8].

Let us consider the values of the model parameters, the correlation coeffi-
cients, and the initial stochastic variances implied by the observed prices of the
European vanilla call and put options on the S&P 500 index and by the value
of the S&P 500 index in November 2005. The S&P 500 index is one of the lead-
ing indices of the New York Stock Exchange. We solve the calibration problem
(24) using the call and put option prices available to us relative to the prices on
November 3, 2005, and we have mc = 303 and mp = 284. The implied values
obtained by solving the calibration problem using the data from November 3,
2005 are used to forecast the option prices of November 7 (mc = 303, mp = 290),
November 14 (mc = 305, mp = 295), and November 28 (mc = 292, mp = 265),
2005. Note that since we use all available prices, the calibration procedure works
simultaneously on out of money, at the money and in the money call and put op-
tion prices. In the stopping criterion (26), we use etol = 0.07 and nmax = 10000.
In the forecasting of option prices, we assume that the underlying asset price
is known on the forecasting day and we forecast the values of the stochastic
variances v1,t, v2,t, t > t0 = 0 on the forecasting day. In particular, starting from
the stochastic variances ṽ1,0, ṽ2,0 at time t = t0 = 0 obtained from the calibra-
tion procedure, we forecast the stochastic variances using the mean values v̂1,t|Θ,
v̂2,t|Θ, t > t0 = 0, of the random variables v1,t, v2,t, t > 0, that is, we use the
formulae (see [8] for further details):

v̂1,t|Θ = E(v1,t|Θ) = θ1(1− e−χ1(t−t0))) + e−χ1(t−t0)ṽ1,0, t > t0 = 0, (27)

v̂2,t|Θ = E(v2,t|Θ) = θ2(1− e−χ2(t−t0))) + e−χ2(t−t0)ṽ2,0, t > t0 = 0. (28)

Note that in our experiment, t = t0 = 0 corresponds to November 3, 2005, and
that we have assumed that the underlying asset price is known on the forecasting
days (November 7, 14, and 28, 2005). The dates November 3, 7, 14, and 28
were chosen to show that the model parameters calibrated using data from the
beginning of the month (November 3) can be used to accurately forecast the
option prices approximately a week (November 7), two weeks (November 14)
and a month (November 28) into the future.

Figures 1, 2, and 3 show the forecast prices of European vanilla call and
put options on November 7, 14, and 28, 2005, respectively, compared with the
observed prices. The agreement between the observed and forecast prices is very
satisfactory for all dates, indicating that the future prices of the options could be
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Fig. 3. November 28, 2005: European vanilla call and put option prices (V) on the
S&P 500 index forecasted using the multiscale model and prices observed in the market
versus moneyness K/S0

well forecast using the the implied values obtained from the prices of November
3, 2005 in conjunction with formulae (15), (19), (27), (28) and the price of the
underlying asset on the forecasting day. Comparison of the calibration procedure
employed here, which uses both call and put option prices, and the calibration
procedure of [8], which uses only call option prices, discloses that the procedure
proposed here provides substantially better forecasts of at the money and out of
the money option prices. The superiority of the proposed method becomes more
evident as the time to maturity increases.

4 Conclusions

Previously, the authors showed [8] that the two factor model (1), (2), (3) captures
the volatility smile better than the one factor model [12] and provides high-
quality forecasts of European vanilla option prices when the time to maturity
is large. Here we have presented a calibration procedure that yields improved
forecasts of at the money and out of the money option prices; this improvement
can be attributed to the proposed procedure giving more weight to these prices
than the procedure used in [8]. In fact, these prices are small compared with
those of in the money options, and hence paly a minor role in the minimization
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of the objective function (25) especially in the first steps of the minimization
procedure. When only the call option prices are used in the objective function
(as in [8]), the number of in the money and out of the money options traded in
a given day can vary substantially depending on the asset price. When we add
the put option prices as data, however, we balance the portfolio of options used
as data. In fact, the call and put options traded in a given day usually have the
same strike price and maturity time, so that when a put option is in the money
the corresponding call option is out of the money and vice versa. Moreover, by
adding the put option prices, we increase the number of data on at the money
options, that is, we increase the weight of the at the money options data in the
calibration. The above considerations account for the observed improvement in
the quality of the forecasted prices of the at the money and out of the money
options when we substitute the calibration procedure of [8] with the calibration
procedure suggested here. These findings suggest that use of a weighted least
squares procedure may further improve the model calibration. Finally we point
out that the calibration problem studied here can be generalized by considering
the parameters ai, bi, i = 1, 2, as unknowns to be determined in the calibration.
The use of these four extra parameters could potentially improve the ability of
the model to describe the financial data considered.
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