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1 Introduction

Numerous attempts have been undertaken to describe basic principles on which
the behaviour of individuals are based. Expected utility theory was originally
proposed by J. Bernoulli in 1738. In his work J. Bernoulli used such terms as
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risk aversion and risk premium and proposed a concave (logarithmic) utility
function, see [5]. The utilitarianism theory that emerged in the 18th century
considered utility maximization as a principle for the organisation of society.
Later the expected utility idea was applied to game theory and formalized by [31].
A utility function relates some observable variable, in most cases consumption,
and an unobservable utility level that this consumption delivers. It was suggested
that individuals’ preferences are based on this unobservable utility: such bundles
of goods are preferred that are associated with higher utility levels. It was claimed
that three types of utility functions – concave, convex and linear – correspond to
three types of individuals – risk averse, risk neutral and risk seeking. A typical
economic agent was considered to be risk averse and this was quantified by
coefficients of relative or absolute risk aversion. Another important step in the
development of utility theory was the prospect theory of [24]. By behavioural
experiments they found that people act risk averse above a certain reference
point and risk seeking below it. This implies a concave form of the utility function
above the reference point and a convex form below it.

Besides these individual utility functions, market utility functions have re-
cently been analyzed in empirical studies by [22], [27] and others. Across differ-
ent markets, the authors observed a common pattern in market utility functions:
There is a reference point near the initial wealth and in a region around this ref-
erence point the market utility functions are convex. But for big losses or gains
they show a concave form – risk aversion. Such utility functions disagree with
the classical utility functions of [31] and also with the findings of [24]. They are
however in concordance with the utility function form proposed by [18].

In this paper, we analyze how these market utility functions can be explained
by aggregating individual investors’ attitudes. To this end, we first determine
empirical pricing kernels from DAX data. Our estimation procedure is based
on historical and risk neutral densities and these distributions are derived with
stochastic volatility models that are widely used in industry. From these pricing
kernels we construct the corresponding market utility functions. Then we de-
scribe our method of aggregating individual utility functions to a market utility
function. This leads to an inverse problem for the density function that describes
how many investors have the utility function of each type. We solve this prob-
lem by discrete approximation. In this way, we derive utility functions and their
distribution among investors that allow to recover the market utility function.
Hence, we explain how (and what) individual utility functions can be used to
form the behaviour of the whole market.

The paper is organized as follows: In section 2, we describe the theoretical
connection between utility functions and pricing kernels. In section 3, we present
a consistent stochastic volatility framework for the estimation of both the his-
torical and the risk neutral density. Moreover, we discuss the empirical pricing
kernel implied by the DAX in 2000, 2002 and 2004. In section 4, we explain
the utility aggregation method that relates the market utility function and the
utility functions of individual investors. This aggregation mechanism leads to
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an inverse problem that is analyzed and solved in this section. In section 5, we
conclude and discuss related approaches.

2 Pricing kernels and utility functions

In this section, we derive the fundamental relationship between utility functions
and pricing kernels. It describes how a representative utility function can be
derived from historical and risk-neutral distributions of assets. In the following
sections, we estimate the empirical pricing kernel and observe in this way the
market utility function.

First, we derive the price of a security in an equilibrium model: we consider
an investor with a utility function U who has as initial endowment one share of
stock. He can invest into the stock and a bond up to a final time when he can
consume. His problem is to choose a strategy that maximizes the expected utility
of his initial and terminal wealth. In continuous time, this leads to a well known
optimization problem introduced by [26] for stock prices modelled by diffusions.
In discrete time, it is a basic optimization problem, see [13].

From this result, we can derive the asset pricing equation

P0 = EP [ψ(ST )MT ]

for a security on the stock (St) with payoff function ψ at maturity T . Here, P0

denotes the price of the security at time 0 and EP is the expectation with respect
to the real/historical measure P . The stochastic discount factor MT is given by

MT = βU ′(ST )/U
′(S0) (1)

where β is a fixed discount factor. This stochastic discount factor is actually
the projection of the general stochastic discount factor on the traded asset (St).
The stochastic discount factor can depend on more variables in general. But as
discussed in [13] this projection has the same interpretation for pricing as the
general stochastic discount factor.

Besides this equilibrium based approach, [7] derived the price of a security
relative to the underlying by constructing a perfect hedge. The resulting contin-
uous delta hedging strategy is equivalent to pricing under a risk neutral measure
Q under which the discounted price process of the underlying becomes a mar-
tingale. Hence, the price of a security is given by an expected value with respect
to a risk neutral measure Q:

P0 = EQ [exp(−rT )ψ(ST )]
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If p denotes the historical density of ST (i.e. P (ST ≤ s) =
∫ s

−∞ p(x) dx) and q

the risk neutral density of ST (i.e. Q(ST ≤ s) =
∫ s

−∞ q(x) dx) then we get

P0 = exp(−rT )
∫
ψ(x)q(x)dx

= exp(−rT )
∫
ψ(x)

q(x)

p(x)
p(x)dx

= EP

[
exp(−rT )ψ(ST )

q(ST )

p(ST )

] (2)

Combining equations (1) and (2) we see

β
U ′(s)

U ′(S0)
= exp(−rT )q(s)

p(s)
.

Defining the pricing kernel by K = q/p we conclude that the form of the market
utility function can be derived from the empirical pricing kernel by integration:

U(s) = U(S0) +

∫ s

S0

U ′(S0)
exp(−rT )

β

q(x)

p(x)
dx

= U(S0) +

∫ s

S0

U ′(S0)
exp(−rT )

β
K(x)dx

because S0 is known.

As an example, we consider the model of [7] where the stock follows a geo-
metric Brownian motion

dSt/St = µdt+ σdWt (3)

Here the historical density p of St is log-normal, i.e.

p(x) =
1

x

1√
2πσ̃2

exp

{
−1

2

(
log x− µ̃

σ̃

)2
}
, x > 0

where µ̃ = (µ− σ2/2)t+ logS0 and σ̃ = σ
√
t. Under the risk neutral measure Q

the drift µ is replaced by the riskless interest rate r, see e.g. [19]. Thus, also the
risk neutral density q is log-normal. In this way, we can derive the pricing kernel

K(x) =

(
x

S0

)−µ−r

σ2

exp{(µ− r)(µ+ r − σ2)T/(2σ2)}.

This pricing kernel has the form of a derivative of a power utility

K(x) = λ

(
x

S0

)−γ
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where the constants are given by λ = e
(µ−r)(µ+r−σ2)T

2σ2 and γ = µ−r
σ2 . This gives a

utility function corresponding to the underlying (3)

U(ST ) = (1− µ− r

σ2
)−1 S

(1−µ−r

σ2 )

T

where we ignored additive and multiplicative constants. In this power utility
function the risk aversion is not given by the market price of risk (µ − r)/σ.
Instead investors take the volatility more into account. The expected return
µ − r that is adjusted by the riskfree return is related to the variance. This
results in a higher relative risk aversion than the market price of risk.

Fig. 1. up: Utility function in the Black Scholes model for T = 0.5 years ahead and drift
µ = 0.1, volatility σ = 0.2 and interest rate r = 0.03. down: Market utility function on
06/30/2000 for T = 0.5 years ahead.

A utility function corresponding to the Black-Scholes model is shown in the
upper panel of figure 1 as a function of returns. In order to make different
market situations comparable we consider utility functions as functions of (half
year) returns R = S0.5/S0. We chose the time horizon of half a year ahead for
our analysis. Shorter time horizons are interesting economically and moreover
the historical density converges to the Dirac measure so that results become
trivial (in the end). Longer time horizons are economically more interesting but
it is hardly possible to estimate the historical density for a long time ahead. It
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neither seems realistic to assume that investors have clear ideas where the DAX
will be in e.g. 10 years. For these reasons we use half a year as future horizon.
Utility functions Ũ of returns are defined by:

Ũ(R) := U(RS0), R > 0

where S0 denotes the value of the DAX on the day of estimation. Because of
U ′ = cK for a constant c we have Ũ ′(R) = cK(RS0)S0 and we see that also util-
ity functions of returns are given as integrals of the pricing kernel. The change
to returns allows us to compare different market regimes independently of the
initial wealth. In the following we denote the utility functions of returns by the
original notation U . Hence, we suppress in the notation the dependence of the
utility function U on the day of estimation t.

The utility function corresponding to the model of [7] is a power utility,
monotonically increasing and concave. But such classical utility functions are not
observed on the market. Parametric and nonparametric models that replicate the
option prices all lead to utility functions with a hump around the initial wealth
level. This is described in detail later but is shown already in figure 1. The upper
panel presents the utility function corresponding to Black-Scholes model with a
volatility of 20% and an expected return of 10%. The function is concave and
implies a constant relative risk aversion. The utility function estimated on the
bullish market in summer 2000 is presented in the lower panel. Here, the hump
around the money is clearly visible. The function is no more concave but has a
region where investors are risk seeking. This risk proclivity around the money is
reflected in a negative relative risk aversion.

3 Estimation

In this section, we start by reviewing some recent approaches for estimating the
pricing kernel. Then we describe our method that is based on estimates of the
risk neutral and the historical density. The risk neutral density is derived from
option prices that are given by an implied volatility surface and the historical
density is estimated from the independent data set of historical returns. Finally,
we present the empirical pricing kernels and the inferred utility and relative risk
aversion functions.

3.1 Estimation approaches for the pricing kernel

There exist several ways and methods to estimate the pricing kernel. Some of
these methods assume parametric models while others use nonparametric tech-
niques. Moreover, some methods estimate first the risk neutral and subjective
density to infer the pricing kernel. Other approaches estimate directly the pric-
ing kernel.
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[1] derive a nonparametric estimator of the risk neutral density based on
option prices. In [2], they consider the empirical pricing kernel and the corre-
sponding risk aversion using this estimator. Moreover, they derive asymptotic
properties of the estimator that allow e.g. the construction of confidence bands.
The estimation procedure consists of two steps: First, the option price function is
determined by nonparametric kernel regression and then the risk neutral density
is computed by the formula of [8]. Advantages of this approach are the known
asymptotic properties of the estimator and the few assumptions necessary.

[22] analyses risk aversion by computing the risk neutral density from option
prices and the subjective density from historical data of the underlying. For
the risk neutral distribution, he applies a variation of the estimation procedure
described in [23]: A smooth volatility function derived from observed option
prices gives the risk neutral density by differentiating it twice. The subjective
density is approximated by a kernel density computed from historical data. In
this method bandwidths have to be chosen as in the method of [1].

[27] use a different approach and estimate the subjective density and directly
(the projection of) the pricing kernel. This gives the same information as the
estimation of the two densities because the risk neutral density is the product
of the pricing kernel and the subjective density. For the pricing kernel, they
consider two parametric specifications as power functions and as exponentials
of polynomials. The evolution of the underlying is modelled by GARCH pro-
cesses. As the parametric pricing kernels lead to different results according to
the parametric form used this parametric approach appears a bit problematic.

[11] also estimates the pricing kernel without computing the risk neutral
and subjective density explicitly. Instead of assuming directly a parametric form
of the kernel he starts with a (multidimensional) modified model of [20] and
derives an analytic expression for the pricing kernel by the Girsanov theorem,
see [10] for details. The kernel is estimated by a simulated method of moments
technique from equity, fixed income and commodities data and by reprojection.
An advantage of this approach is that the pricing kernel is estimated without
assuming an equity index to approximate the whole market portfolio. But the
estimation procedure is rather complex and model dependent.

In a recent paper, [3] price options in a GARCH framework allowing the
volatility to differ between historical and risk neutral distribution. This approach
leads to acceptable calibration errors between the observed option prices and the
model prices. They estimate the historical density as a GARCH process and con-
sider the pricing kernel only on one day. This kernel is decreasing which coincides
with standard economic theory. But the general approach of changing explicitly
the volatility between the historical and risk neutral distribution is not sup-
ported by the standard economic theory.

We estimate the pricing kernel in this paper by estimating the risk neutral
and the subjective density and then deriving the pricing kernel. This approach
does not impose a strict structure on the kernel. Moreover, we use accepted
parametric models because nonparametric techniques for the estimation of sec-
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ond derivatives depend a lot on the bandwidth selection although they yield
the same pricing kernel behaviour over a wide range of bandwidths. For the
risk neutral density we use a stochastic volatility model that is popular both
in academia and in industry. The historical density is more difficult to estimate
because the drift is not fixed. Hence, the estimation depends more on the model
and the length of the historical time series. In order to get robust results we
consider different (discrete) models and different lengths. In particular, we use a
GARCH model that is the discrete version of the continuous model for the risk
neutral density. In the following, we describe these models, their estimation and
the empirical results.

3.2 Estimation of the risk neutral density

Stochastic volatility models are popular in industry because they replicate the
observed smile in the implied volatility surfaces (IVS) rather well and moreover
imply rather realistic dynamics of the surfaces. Nonparametric approaches like
the local volatility model of [16] allow a perfect fit to observed price surfaces
but their dynamics are in general contrary to the market. As [4] points out the
dynamics are more important for modern products than a perfect fit. Hence,
stochastic volatility models are popular.

We consider the model of [20] for the risk neutral density because it can be
interpreted as the limit of GARCH models. The Heston model has been refined
further in order to improve the fit, e.g. by jumps in the stock price or by a
time varying mean variance level. We use the original Heston model in order to
maintain a direct connection to GARCH processes. Although it is possible to
estimate the historical density also with the Heston model e.g. by Kalman filter
methods we prefer more direct approaches in order to reduce the dependence of
the results on the model and the estimation technique.

The stochastic volatility model of [20] is given by the two stochastic differ-
ential equations:

dSt

St
= rdt+

√
VtdW

1
t

where the variance process is modelled by a square-root process:

dVt = ξ(η − Vt)dt+ θ
√
VtdW

2
t

and W 1 and W 2 are Wiener processes with correlation ρ and r is the risk free
interest rate. The first equation models the stock returns by normal innovations
with stochastic variance. The second equation models the stochastic variance
process as a square-root diffusion.

The parameters of the model all have economic interpretations: η is called
the long variance because the process always returns to this level. If the variance
Vt is e.g. below the long variance then η− Vt is positive and the drift drives the
variance in the direction of the long variance. ξ controls the speed at which the
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variance is driven to the long variance. In calibrations, this parameter changes
a lot and makes also the other parameters instable. To avoid this problem, the
reversion speed is kept fixed in general. We follow this approach and choose
ξ = 2 as [4] does. The volatility of variance θ controls mainly the kurtosis
of the distribution of the variance. Moreover, there are the initial variance V0
of the variance process and the correlation ρ between the Brownian motions.
This correlation models the leverage effect: When the stock goes down then the
variance goes up and vice versa. The parameters also control different aspects
of the implied volatility surface. The short (long) variance determines the level
of implied volatility for short (long) maturities. The correlation creates the skew
effect and the volatility of variance controls the smile.

The variance process remains positive if the volatility of variance θ is small
enough with respect to the product of the mean reversion speed ξ and the long
variance level η (i.e. 2ξη > θ2). As this constraint leads often to significantly
worse fits to implied volatility surfaces it is in general not taken into account
and we follow this approach.

The popularity of this model can probably be attributed to the semiclosed
form of the prices of plain vanilla options. [9] showed that the price C(K,T ) of
a European call option with strike K and maturity T is given by

C(K,T ) =
exp{−α ln(K)}

π

∫ +∞

0

exp{−iv ln(K)}ψT (v)dv

for a (suitable) damping factor α > 0. The function ψT is given by

ψT (v) =
exp(−rT )ϕT {v − (α+ 1)i}
α2 + α− v2 + i(2α+ 1)v

where ϕT is the characteristic function of log(ST ). This characteristic function
is given by

ϕT (z) = exp{ −(z2 + iz)V0

γ(z) coth γ(z)T
2 + ξ − iρθz

}

×
exp{ ξηT (ξ−iρθz)

θ2 + izTr + iz log(S0)}

(cosh γ(z)T
2 + ξ−iρθz

γ(z) sinh γ(z)T
2 )

2ξη

θ2

(4)

where γ(z)
def
=

√
θ2(z2 + iz) + (ξ − iρθz)2, see e.g. [12].

For the calibration we minimize the absolute error of implied volatilities based
on the root mean square error:

ASEt
def
=

√√√√ n∑
i=1

n−1{IV mod
i (t)− IV mar

i (t)}2
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where mod refers to a model quantity, mar to a quantity observed on the mar-
ket and IV (t) to an implied volatility on day t. The index i runs over all n
observations of the surface on day t.

It is essential for the error functional ASEt which observed prices are used for
the calibration. As we investigate the pricing kernel for half a year to maturity
we use only the prices of options that expire in less than 1.5 years. In order to
exclude liquidity problems occurring at expiry we consider for the calibration
only options with more than 1 month time to maturity. In the moneyness di-
rection we restrict ourselves to strikes 50% above or below the spot for liquidity
reasons.

The risk neutral density is derived by estimation of the model parameters by
a least squares approach. This amounts to the minimization of the error func-
tional ASEt. [15] provided evidence that such error functionals may have local
minima. In order to circumvent this problem we apply a stochastic optimization
routine that does not get trapped in a local minimum. To this end, we use the
method of differential evolution developed by [30].

Having estimated the model parameters we know the distribution of XT =
logST in form of the characteristic function ϕT , see (4). Then the corresponding
density f of XT can be recovered by Fourier inversion:

f(x) =
1

2π

∫ ∞

−∞
eitxϕT (t)dt,

see e.g. [6]. This integral can be computed numerically.
Finally, the risk neutral density q of ST = exp(XT ) is given as a transformed

density:

q(x) =
1

x
f{log(x)}.

This density q is risk neutral because it is derived from option prices and options
are priced under the risk neutral measure. This measure is applied because banks
replicate the payoff of options so that no arbitrage conditions determine the
option price, see e.g. [28]. An estimated risk neutral density is presented in
figure 2. It is estimated from the implied volatility shown in figure 3 for the
day 24/03/2000. The distribution is right skewed and its mean is fixed by the
martingale property. This implies that the density is low for high profits and high
for high losses. Moreover, the distribution is not symmetrical around the neutral
point where there are neither profits nor losses. For this and all the following
estimations we approximate the risk free interest rates by the EURIBOR. On
each trading day we use the yields corresponding to the maturities of the implied
volatility surface. As the DAX is a performance index it is adjusted to dividend
payments. Thus, we do not have to consider dividend payments explicitly.

3.3 Estimation of the historical density

While the risk neutral density is derived from option prices observed on the day
of estimation we derive the subjective density from the historical time series of
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Fig. 2. Risk neutral density on 24/03/2000 half a year ahead.

the index. Hence, the two data sets are independent in the sense that the option
prices reflect the future movements and the historical time series the past.

The estimation of the historical density seems more difficult than the esti-
mation of the risk neutral density because the drift is not fixed and it depends
in general on the length of the time series. Because of these difficulties we use
different models and time horizons for the historical density: First, we estimate
a GARCH in mean model for the returns. Returns are generally assumed to be
stationary and we confirmed this at least in the time intervals we consider. The
mean component in the GARCH model is important to reflect different market
regimes. We estimate the GARCH model from the time series of the returns
of the last two year because GARCH models require quite long time series for
the estimation in order to make the standard error reasonably small. We do
not choose longer time period for the estimation because we want to consider
special market regimes. Besides this popular model choice we apply a GARCH
model that converges in the limit to the Heston model that we used for the risk
neutral density. As this model is also hard to estimate we use again the returns
of the last 2 years for this model. Moreover, we consider directly the observed
returns of the last year. The models and their time period for the estimation
are presented in table 1. All these models give by simulation and smoothing the
historical density for half a year ahead.

The GARCH estimations are based on the daily log-returns

Ri = log(Sti)− log(Sti−1)
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Fig. 3. Implied volatility surface on 24/03/00.

Table 1. Models and the time periods used for their estimation.

model time period

GARCH in mean 2.0y
discrete Heston 2.0y
observed returns 1.0y

where (St) denotes the price process of the underlying and ti, i = 1, 2, . . . denote
the settlement times of the trading days. Returns of financial assets have been
analyzed in numerous studies, see e.g. [14]. A model that has often been suc-
cessfully applied to financial returns and their stylized facts is the GARCH(1,1)
model. This model with a mean is given by

Ri = µ+ σiZi

σ2
i = ω + αR2

i−1 + βσ2
i−1

where (Zi) are independent identically distributed innovations with a standard
normal distribution, see e.g. [17]. On day tj the model parameters µ, ω, α and
β are estimated by quasi maximum likelihood from the observations of the last
two years, i.e. Rj−504, . . . , Rj assuming 252 trading days per year.

After the model parameters have been estimated on day tj from historical
data the process of logarithmic returns (Ri) is simulated half a year ahead, i.e.
until time tj + 0.5. In such a simulation µ, ω, α and β are given and the time
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series (σi) and (Ri) are unknown. The values of the DAX corresponding to the
simulated returns are then given by inverting the definition of the log returns:

Sti = Sti−1 exp(Ri)

where we start with the observed DAX value on day tj . Repeating the simulation
N times we obtain N samples of the distribution of Stj+0.5. We use N = 2000
simulations because tests have shown that the results become robust around this
number of simulations.

From these samples we estimate the probability density function of Stj+0.5

(given (Stj−126 , . . . , Stj )) by kernel density estimation. We apply the Gaussian
kernel and choose the bandwidth by Silverman’s rule of thumb, see e.g. [29].
This rule provides a trade-off between oversmoothing – resulting in a high bias
– and undersmoothing – leading to big variations of the density. We have more-
over checked the robustness of the estimate relative to this bandwidth choice.
The estimation results of a historical density are presented in figure 4 for the
day 24/03/2000. This density that represents a bullish market is has most of its
weight in the profit region and its tail for the losses is relatively light.

Fig. 4. Historical density on 24/03/2000 half a year ahead.

As we use the Heston model for the estimation of the risk neutral density we
consider in addition to the described GARCH model a GARCH model that is a
discrete version of the Heston model. [21] show that the discrete version of the
square-root process is given by

Vi = ω + βVi−1 + α(Zi−1 − γ
√
Vi−1)
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and the returns are modelled by

Ri = µ− 1

2
Vi +

√
ViZi

where (Zi) are independent identically distributed innovations with a standard
normal distribution. Having estimated this model by maximum likelihood on
day tj we simulate it half a year ahead and then smooth the samples of Stj+0.5

in the same way as in the other GARCH model.

In addition to these parametric models, we consider directly the observed
returns over half a year

R̃i = Sti/Sti−126 .

In this way, we interpret these half year returns as samples from the distribution
of the returns for half a year ahead. Smoothing these historical samples of returns
gives an estimate of the density of returns and in this way also an estimate of
the historical density of Stj+0.5.

3.4 Empirical pricing kernels

In contrast to many other studies that concentrate on the S&P500 index we
analyze the German economy by focusing on the DAX, the German stock index.
This broad index serves as an approximation to the German economy. We use
two data sets: A daily time series of the DAX for the estimation of the subjective
density and prices of European options on the DAX for the estimation of the
risk neutral density.

In figure 5, we present the DAX in the years 1998 to 2004. This figure shows
that the index reached its peak in 2000 when all the internet firms were making
huge profits. But in the same year this bubble burst and the index fell afterwards
for a long time. The historical density is estimated from the returns of this time
series. We analyze the market utility functions in March 2000, July 2002 and
June 2004 in order to consider different market regimes. We interpret 2000 as a
bullish, 2002 as a bearish and 2004 as a unsettled market. These interpretations
are based on table 2 that describes the changes of the DAX over the preceding
1 or 2 years. (In June 2004 the market went up by 11% during the previous 10
months.)

A utility function derived from the market data is a market utility function.
It is estimated as an aggregate for all investors as if the representative investor
existed. A representative investor is however just a convenient construction be-
cause the existence of the market itself implies that the asset is bought and sold,
i.e. at least two counterparties are required for each transaction.

In section 2 we identified the market utility function (up to linear transfor-
mations) as

U(R) =

∫ R

R0

K(x)dx
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Fig. 5. DAX, 1998 - 2004.

Table 2. Market regimes in 2000, 2002 and 2004 described by the return S0/S0−∆ for
periods ∆ = 1.0y, 2.0y.

month 1.0y 2.0y

03/2000 1.63 1.57
07/2002 0.66 0.54
06/2004 1.11 0.98

where K is the pricing kernel for returns. It is defined by

K(x) = q(x)/p(x)

in terms of the historical and risk neutral densities p and q of returns. Any utility
function (both cardinal and ordinal) can be defined up to a linear transformation,
therefore we have identified the utility functions sufficiently. In section 3.3 we
proposed different models for estimating the historical density. In figure 6 we
show the pricing kernels resulting from the different estimation approaches for
the historical density. The figure shows that all three kernels are quite similar:
They have the same form, the same characteristic features like e.g. the hump and
differ in absolute terms only a little. This demonstrates the economic equivalence
of the three estimation methods on this day and this equivalence holds also
for the other days. In the following we work with historical densities that are
estimated by the observed returns.
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Fig. 6. Empirical pricing kernel on 24/03/2000 (bullish market).

Besides the pricing kernel and the utility function we consider also the risk
attitudes in the markets. Such risk attitudes are often described in terms of
relative risk aversion that is defined by

RRA(R) = −RU
′′(R)

U ′(R)
.

Because of U ′ = cK = cq/p for a constant c the relative risk aversion is also
given by

RRA(R) = −Rq
′(R)p(R)− q(R)p′(R)

p2(R)
/
q(R)

p(R)
= R

(
p′(R)

p(R)
− q′(R)

q(R)

)
.

Hence, we can estimate the relative risk aversion from the estimated historical
and risk neutral densities.

In figure 7 we present the empirical pricing kernels in March 2000, July 2002
and June 2004. The dates represent a bullish, a bearish and an unsettled markets,
see table 2. All pricing kernels have a proclaimed hump located at small profits.
Hence, the market utility functions do not correspond to standard specification of
utility functions. We present the pricing kernels only in regions around the initial
DAX (corresponding to a return of 1) value because the kernels explode outside
these regions. This explosive behaviour reflects the typical pricing kernel form for
losses. The explosion of the kernel for large profits is due to numerical problems in
the estimation of the very low densities in this region. But we can see that in the
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unsettled market the kernel is concentrated on a small region while the bullish
and bearish markets have wider pricing kernels. The hump of the unsettled
market is also narrower than in the other two regimes. The bullish and bearish
regimes have kernels of similar width but the bearish kernel is shifted to the
loss region and the bullish kernel is located mainly in the profit area. Moreover,
the figures show that the kernel is steeper in the unsettled markets than in the
other markets. But this steepness cannot be interpreted clearly because pricing
kernels are only defined up to a multiplicative constant.

Fig. 7. Empirical pricing kernel on 24/03/2000 (bullish), 30/07/2002 (bearish) and
30/06/2004 (unsettled or sidewards market).

The pricing kernels are the link between the relative risk aversion and the
utility functions that are presented in figure 8. These utility functions are only
defined up to linear transformations, see section 2. All the utility functions are
increasing but only the utility function of the bullish market is concave. This
concavity can be seen from the monotonicity of the kernel, see figure 7. Actually,
this non convexity can be attributed to the quite special form of the historical
density which has two modes on this date, see figure 4. Hence, we presume that
also this utility function has in general a region of convexity. The other two utility
functions are convex in a region of small profits where the bullish utility is almost
convex. The derivatives of the utility functions cannot be compared directly
because utility functions are identified only up to multiplicative constants. But
we can compare the ratio of the derivatives in the loss and profit regions for
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the three dates because the constants cancel in these ratios. We see that the
derivatives in the loss region are highest in the bullish and lowest in the bearish
market and vice versa in the profit region. Economically these observations can
be interpreted in such a way that in the bullish market a loss (of 1 unit) reduces
the utility stronger than in the bearish market. On the other hand, a gain (of 1
unit) increases the utility less than in the bearish market. The unsettled market
shows a behaviour between these extreme markets. Hence, investors fear in a
good market situation losses more than in a bad situation and they appreciate
profits in a good situation less than in a bad situation.

Fig. 8. Market utility functions on 24/03/2000 (bullish), 30/07/2002 (bearish) and
30/06/2004 (unsettled or sidewards market).

Finally, we consider the relative risk aversions in the three market regimes.
These risk aversions are presented in figure 9, they do not depend on any con-
stants but are completely identified. We see that the risk aversion is smallest
in all markets for a small profit that roughly corresponds to the initial value
plus a riskless interest on it. In the unsettled regime the market is risk seeking
in a small region around this minimal risk aversion. But then the risk aversion
increases quite fast. Hence, the representative agent in this market is willing
to take small risks but is sensitive to large losses or profits. In the bullish and
bearish regimes the representative agent is less sensitive to large losses or profits
than in the unsettled market. In the bearish situation the representative agent
is willing to take more risks than in the bullish regime. In the bearish regime the
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investors are risk seeking in a wider region than in the unsettled regime. In this
sense they are more risk seeking in the bearish market. In the bullish market –
on the other hand – the investors are never risk seeking so that they are less risk
seeking than in the unsettled market.

Fig. 9. Relative risk aversions on 24/03/2000 (bullish), 30/07/2002 (bearish) and
30/06/2004 (unsettled or sidewards market).

The estimated utility functions most closely follow the specification proposed
by [18]. The utility function proposed by [24] consists of one concave and one
convex segment and is less suitable for describing the observed behaviour, see
figure 10. Both utility functions were proposed to account for two opposite types
of behaviour with respect to risk attitudes: buying insurance and gambling.
Any utility function that is strictly concave fails to describe both risk attitudes.
Most notable examples are the quadratic utility function with the linear pricing
kernel as in the CAPM model and the CRRA utility function. These functions
are presented in figure 10. Comparing this theoretical figure with the empirical
results in figure 7 we see clearly the shortcoming of the standard specifications
of utility functions to capture the characteristic hump of the pricing kernels.

4 Individual investors and their utility functions

In this section, we introduce a type of utility function that has two regions
of different risk aversion. Then we describe how individual investors can be
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Fig. 10. Common utility functions (solid) and their pricing kernels (dotted) (upper:
quadratic, middle: power, lower panel: Kahneman and Tversky utility function).

aggregated to a representative agent that has the market utility function. Finally,
we solve the resulting estimation problem by discretization and estimate the
distribution of individual investors.

4.1 Individual Utility Function

We learn from figures 10 and 7 that the market utility differs significantly from
the standard specification of utility functions. Moreover, we can observe from
the estimated utility functions 8 that the loss part and the profit part of the
utility functions can be quite well approximated with hyperbolic absolute risk
aversion (HARA) functions, k = 1, 2:

U (k)(R) = ak(R− ck)
γk + bk,

where the shift parameter is ck. These power utility functions become infinitely
negative for R = ck and can be extended by U (k)(R) = −∞ for R ≤ ck, i.e.
investors will avoid by all means the situation when R ≤ ck. The CRRA utility
function has ck = 0.

We try to reconstruct the market utility of the representative investor by
individual utility functions and hence assume that there are many investors on
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the market. Investor i will be attributed with a utility function that consists of
two HARA functions:

Ui(R) =

{
max {U(R, θ1, c1);U(R, θ2, c2,i)} , if R > c1

−∞, if R ≤ c1

where U(R, θ, c) = a(R − c)γ + b, θ = (a, b, γ)⊤, c2,i > c1. If a1 = a2 = 1,
b1 = b2 = 0 and c1 = c2 = 0, we get the standard CRRA utility function.

The parameters θ1 and θ2 and c1 are the same for all investors who differ
only with the shift parameter c2. θ1 and c1 are estimated from the lower part of
the utility market function, where all investors probably agree that the market
is “bad”. θ2 is estimated from the upper part of the utility function where all
investors agree that the state of the world is “good”. The distribution of c2
uniquely defines the distribution of switching points and is computed in section
4.3. In this way a bear part Ubear(R) = U(R, θ1, c1) and a bull part Ubull(R) =
U(R, θ1, c2) can be estimated by least squares.

The individual utility function can then be denoted conveniently as:

Ui(R) =

{
max {Ubear(R);Ubull(R, ci)} , if R > c1;

−∞, if R ≤ c1.
(5)

Switching between Ubear and Ubull happens at the switching point z, whereas
Ubear(z) = Ubull(z, ci). The switching point is uniquely determined by ci ≡ c2,i.
The notations bear and bull have been chosen because Ubear is activated when
returns are low and Ubull when returns are high.

Each investor is characterised by a switching point z. The smoothness of the
market utility function is the result of the aggregation of different attitudes. Ubear

characterizes more cautious attitudes when returns are low and Ubull describes
the attitudes when the market is booming. Both Ubear and Ubull are concave.
However, due to switching the total utility function can be locally convex.

These utility functions are illustrated in figure 11 that shows the results
for the unsettled market. We observe/estimate the market utility function that
does not correspond to standard utility approaches because of the convex region.
We propose to reconstruct this phenomenon by individual utility functions that
consist of a bearish part and a bullish part. While the bearish part is fixed for
all investors the bullish part starts at the switching point that characterizes an
individual investor. By aggregating investors with different switching points we
reconstruct the market utility function. We describe the aggregation in section
4.2 and estimate the distribution of switching points in section 4.3. In this way
we explain the special form of the observed market utility functions.

4.2 Market Aggregation Mechanism

We consider the problem of aggregating individual utility functions to a represen-
tative market utility function. A simple approach to this problem is to identify
the market utility function with an average of the individual utility functions.
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Fig. 11. Market utility function (solid) with bearish (dashed) and bullish (dotted) part
of an individual utility function 5 estimated in the unsettled market of 30/06/2004.

To this end one needs to specify the observable states of the world in the future
by returns R and then find a weighted average of the utility functions for each
state. If the importance of the investors is the same, then the weights are equal:

U(R) =
1

N

N∑
i=1

Ui(R),

where N is the number of investors. The problem that arises in this case is
that utility functions of different investors can not be summed up since they are
incomparable.

Therefore, we propose an alternative aggregation technique. First we specify
the subjective states of the world given by utility levels u and then aggregate the
outlooks concerning the returns in the future R for each perceived state. For a
subjective state described with the utility level U , such that

u = U1(R1) = U2(R2) = . . . = UN (RN )

the aggregate estimate of the resulting returns is

RA(u) =
1

N

N∑
i=1

U−1
i (u) (6)

if all investors have the same market power. The market utility function UM

resulting from this aggregation is given by the inverse R−1
A .
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In contrast to the naive approach described at the beginning of this section,
this aggregation mechanism is consistent under transformations: if all individ-
ual utility functions are changed by the same transformation then the resulting
market utility is also given by the transformation of the original aggregated
utility. We consider the individual utility functions Ui and the resulting aggre-
gate UM . In addition, we consider the transformed individual utility functions
Uϕ
i (x) = ϕ{Ui(x)} and the corresponding aggregate Uϕ

M where ϕ is a transfor-

mation. Then the aggregation is consistent in the sense that Uϕ
M = ϕ(UM ). This

property can be seen from

(Uϕ
M )−1(u) =

1

N

N∑
i=1

(Uϕ
i )

−1(u)

=
1

N

N∑
i=1

U−1
i {ϕ−1(u)}

= U−1
M {ϕ−1(u)}

The naive aggregation is not consistent in the above sense as the following ex-
ample shows: We consider the two individual utility functions U1(x) =

√
x and

U2(x) =
√
x/2 under the logarithmic transformation ϕ = log. Then the naively

aggregated utility is given by UM (x) = 3
√
x/4. Hence, the transformed ag-

gregated utility is ϕ{UM (x)} = log(3/4) + log(x)/2. But the aggregate of the
transformed individual utility functions is

Uϕ
M (x) =

1

2

{
log(

√
x) + log(

√
x/2)

}
=

1

2
log

(
1

2

)
+ log(x)/2.

This implies that Uϕ
M ̸= ϕ(UM ) in general.

This described aggregation approach can be generalized in two ways: If the
individual investors have different market power then we use the corresponding
weights wi in the aggregation (6) instead of the uniform weights. As the number
of market participants is in general big and unknown it is better to use a con-
tinuous density f instead of the discrete distributions given by the weights wi.
These generalizations lead to the following aggregation

RA(u) =

∫
U−1(·, z)(u)f(z)dz

where U(·, z) is the utility function of investor z. We assume in the following that
the investors have utility function of the form described in section 4.1. In the
next section we estimate the distribution of the investors who are parametrized
by z.
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4.3 The Estimation of the Distribution of Switching Points

Using the described aggregation procedure, we consider now the problem of
replicating the market utility by aggregating individual utility functions. To this
end, we choose the parametric utility functions U(·, z) described in 4.1 and try to
recover with them the market utility UM . We do not consider directly the utility
functions but minimize instead the distance between the inverse functions:

min
f

∥
∫
U−1(·, z)f(z)dz − U−1

M ∥L2(P̃ ) (7)

where P̃ is image measure of the historical measure P on the returns under the
transformation UM . As the historical measure has the density p the transforma-
tion theorem for densities implies that P̃ has the density

p̃(u) = p{U−1
M (u)}/U ′

M{U−1
M (u)}.

With this density the functional to be minimized in problem (7) can be stated
as ∫ (∫

U−1(u, z)f(z)dz − U−1
M (u)

)2

p̃(u) du

=

∫ (∫
U−1(u, z)f(z)dz − U−1

M (u)

)2

p{U−1
M (u)}/U ′

M{U−1
M (u)} du

=

∫ (∫
U−1(u, z)f(z)dz − U−1

M (u)

)2

p{U−1
M (u)}(U−1

M )′(u) du

because the derivative of the inverse is given by (g−1)′(y) = 1/g′{g−1(y)}. More-
over, we can apply integration by substitution to simplify this expression further∫ (∫

U−1(u, z)f(z)dz − U−1
M (u)

)2

p{U−1
M (u)}(U−1

M )′(u) du

=

∫ (∫
U−1{UM (x), z}f(z)dz − x

)2

p(x) dx.

For replicating the market utility by minimizing (7) we observe first that we
have samples of the historical distribution with density p. Hence, we can replace
the outer integral by the empirical expectation and the minimization problem
can be restated as

min
f

1

n

n∑
i=1

(∫
g{UM (xi), z}f(z)dz − xi

)2

where x1 . . . , xn are the samples from the historical distribution and g = U−1.
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Replacing the density f by a histogram f(z) =
∑J

j=1 θjIBj (z) with bins Bj ,
hj = |Bj |, the problem is transformed into

min
θj

1

n

n∑
i=1


J∑

j=1

g̃(i, j)θj − xi


2

where g̃(i, j) =
∫
Bj
g{UM (xi), z}dz.

Hence, the distribution of switching points can be estimated by solving the
quadratic optimization problem

min
θj

1

n

n∑
i=1


J∑

j=1

g̃(i, j)θj − xi


2

,

s.t. θj ≥ 0,

J∑
j=1

θjhj = 1.

Such quadratic optimization problems are well known and their solutions can
be obtained using standard techniques, see e.g. [25] or [32].

We present in figures 12–14 the estimated distribution of switching points
in the bullish (24/03/2000), bearish (30/07/2002) and unsettled (30/06/2004)
markets. The distribution density f was computed for 100 bins but we checked
the broad range of binwidths. The width of the distribution varies greatly de-
pending on the regularisation scheme, for example as represented by the number
of bins. The location of the distribution maximum, however, remains constant
and independent from the computational method.

The maximum and the median of the distribution, i.e. the returns at which
half of investors have bearish and bullish attitudes, depend on the year. For
example, in the bullish market (Figure 12) the peak of the switching point dis-
tribution is located in the area of high returns around R = 1.07 for half a year.
On the contrary, in the bearish market (Figure 13) the peak of switching points
is around R = 0.93. This means that when the market is booming, such as in
year 1999–2000 prior to the dot-com crash, investors get used to high returns and
switch to the bullish attitude only for comparatively high R’s. An overall high
level of returns serves in this respect as a reference level and investors form their
judgements about the market relative to it. Since different investors have differ-
ent initial wealth, personal habits, attitudes and other factors that our model
does not take into account, we have a distribution of switching points. In the
bearish market the average level of returns is low and investors switch to bullish
attitudes already at much lower R’s.
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Fig. 12. Left panel: the market and fitted utility functions (indistinguishable in the
graph). Right panel: the distribution of the reference points. 24 March 2000, a bullish
market.

5 Conclusion

We have analyzed in this paper empirical pricing kernels in three market regimes
using data on the German stock index and options on this index. In the bullish,
bearish and unsettled market regime we estimate the pricing kernel and derive
the corresponding utility functions and relative risk aversions.

In the unsettled market of June 2004, the market investor is risk seeking
in a small region around the riskless return but risk aversion increases fast for
high absolute returns. In the bullish market of March 2000, the investor is on
the other hand never risk seeking while he becomes more risk seeking in the
bearish market of July 2002. Before the stock market crash in 1987 European
options did not show the smile and the Black-Scholes model captured the data
quite well. Hence, utility functions could be estimated at that times by power
utility functions with a constant positive risk aversion. Our analysis shows that
this simple structure does not hold anymore and discusses different structures
corresponding to different market regimes.

The empirical pricing kernels of all market regimes demonstrate that the
corresponding utility functions do not correspond to standard specifications of
utility functions including [24]. The observed utility functions are closest to the
general utility functions of [18]. We propose a parametric specification of these
functions, estimate it and explain the observed market utility function by aggre-
gating individual utility functions. In this way, we can estimate a distribution of
individual investors.

The proposed aggregation mechanism is based on homogeneous investors
in the sense that they differ only with switching points. Future research can
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Fig. 13. Left panel: the market and fitted utility functions (indistinguishable in the
graph). Right panel: the distribution of the reference points. 30 July 2002, a bearish
market.

reveal how nonlinear aggregation procedures could be applied to heterogeneous
investors.
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