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Abstract. The aim of the paper is to develop a technique for rebal-
ancing pension fund portfolios in function of their pointwise level of risk.
The performance of pension funds is often measured by their global asset
returns because of the latter’s influence on periodic contributions and/or
future benefits. However, in periods of market crisis attention is focused
on the risk level given their social security (and not speculative) function.
We describe the process of the global asset return by a multifractional
Brownian motion using the function H(t) to detect high or low volatil-
ity phases. A procedure is carried out to balance the asset composition
when the established local degree of risk is exceeded. The application is
carried out on portfolios obtained in accordance with Italian regulations
regarding investment limits.
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1 Introduction

Pension funds mainly have a social security function of reimbursing workers’
savings in the form of a life annuity. This involves an accurate and prudent asset
allocation scheme administration.

It has been debated that post retirement benefit plans should have limita-
tions on their asset allocation, based on the risk profile of the different financial
instruments available on the financial market.

The performance of pension funds is usually measured in terms of returns
rather than risk. Risks are taken into account especially during market crises,
when losses in the portfolio of financial instruments of the fund could lead to
depreciations in the accrued contributions.
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Some studies (see [24]) show that post 2001 bankruptcies of US pension funds
had their roots in the actuarial evaluation techniques rather than in asset losses,
if long-term stock return is considered. According to [5] and [17], post retirement
benefit plans, pertaining to the ‘first pillar’ of a pension system, should not invest
in high-risk financial instruments because this would lead to problems related to
moral hazard and to the evaluation of ‘superfluous risk’.

Trudda [27] proposes an application to the pension funds of Italian profes-
sional Orders, in which marginal increments in global asset return appear to
strongly reduce the default probability. He also shows that there is an incentive
to take superfluous risks in the case of a slackening of regulations.

More recently, Otranto and Trudda [18] have supported the idea that there
is a need for a classification of the various degrees of risk for pension funds.
They propose a cluster analysis based on the GARCH volatility of the rates of
return. In [19] another methodology is carried out distinguishing between two
kinds of risk for pensions funds: constant risk and time-varying risk. Although
the method provides a satisfactory ex post risk analysis, the large lag necessary
to get reliable estimates weakens its employment in practical applications when
a timely response is required.

Bikker, Broaders and Drew [8] study the impact of stock market performance
on the investment policy of Dutch pension funds and show that their investment
policies are partially driven by the cyclical performance of the stock market.
In addition they point out that pension funds respond asymmetrically to stock
market shocks: rebalancing is much stronger after negative equity returns.

Stewart [26] analyzes the increasing tendency of pension funds to invest in
hedge funds. He observes that in many cases the real risk is not correctly per-
ceived. This is due to an inefficient regulating system and, in several countries,
the absence of risk monitoring instrument.

In many cases the rules on pension funds investments are derived from the
same laws that regulate investment companies, considering their speculative
function. These regulations often indicate a qualitative restriction without lim-
iting the quantitative measurement of the risk.

In Italy the regulating system for pension funds establishes non restrictive
rules in the investment portfolio composition. Pension funds can invest in liquid
assets, stocks, share of common investment funds. There are some restrictions
about investments in equity and bonds traded in the over the counter markets
and/or in non OECD countries.

In this paper we concentrate on the investment risk: a dynamical analysis
of pension fund’s portfolios is performed by estimating the pointwise regularity
of the return series, assuming that these can be modeled by a multifractional
Gaussian process, using the function H(¢) to detect high or low volatility phases.
In this framework, the estimator we use quantifies the pointwise degree of the
observations’ departure from independence. In a more general way we estimate
the local smoothness of a signal representing the portfolio quote. The intuition is
that this can well synthesize the local degree of risk of a given asset or portfolio.
Provided that the window of estimation is sufficiently small, it should be possible
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to build a warning system for monitoring the risk in pension funds. In this way,
we can monitor the risk evolution after a short time using few daily data, thanks
to the good rate of convergence of the estimator. In the paper we develop the
system and describe the appropriate techniques for the automatic composition
of the fund’s portfolio in case of infringement of the given risk thresholds.

In the application three investment portfolios are simulated respecting Italian
financial laws to show how the levels of risk obtained can be very different.

The paper is organized as follows: in section 2 we recall the main properties
of the model we assume to generate the price dynamics. In section 3 the esti-
mator of the pointwise regularity of the process is discussed. Section 4 concerns
the analytical relationship between the portfolio’s H(t) and the H(t)’s of its
individual assets. In section 5 we develop an analytical approach through the
analysis of the variable H(t). The purpose is the control of risk by a continuous
monitoring and rebalancing policy using optimal portfolio definition. An appli-
cation of three simulated portfolios with different risk degrees is carried out in
section 6; we use the introduced approach to evaluate the the levels of risk over
the time and to develop a rebalancing technique, through the analysis of the
variable H (t). Finally some conclusion are discussed in section 7.

2 The model

In the following we will assume the log price dynamics to be described by a ver-
satile process: the multifractional Brownian motion (mBm). A convenient way
to introduce the mBm is recalling its very well-known special case: the fractional
Brownian motion (fBm). Defined in a celebrated paper by Mandelbrot and Van
Ness [16], the fBm is characterized by a slowly decaying autocorrelation function
depending on the parameter H € (0,1], named Hurst exponent. Following the
definition that can be found in [9], the process has moving average representation

By (t) :C’{wK(2H)}1/2/th(s)dB(s) (1)

with

79 = ey U @ T a9}

I (H+3%
where B(-) stands for the ordinary Brownian motion, C' is a positive constant
and K is the function defined on 0,2[ as K (o) = I'(w + 1)>-2-. The process
is self-similar® of parameter H and has stationary increments. Its covariance
function reads as

3 We recall that the process {X(t), t € T} is said self-similar with parameter H if for

any a > 0 {X(at)} = {a" X (t)}, where the equality holds for the finite-dimensional
distributions of the process (see e.g. [25]).
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The fBm can be generalized by allowing H to vary over time. This extension
— known as multifractional Brownian motion (mBm) (see [20], [21], [1]) — has
the following representation

Mz (1) = C{rK (2H(1)}/2 / f(s)dB(s) 3)
with
L -4 0=
fils) = (H(t)+ 1) {'t = s 1y (s) — 15T 11*00’01(5)}

where H : [0,00) — (0, 1] is required to be a Hélder function of order 0 < n <1
to ensure the continuity of the motion.

Notice that since H(t) is the punctual Holder exponent of the mBm at point
t, the process is locally asymptotically self-similar with index H(t) (see, e.g.,
[6]) in the sense that, denoted by Z(t,au) := Mg (t4qu)(t + au) — My (t) the
increment process of the mBm at time ¢ and lag au, it holds

lim o 7O Z(t, au) 4 B (u), u e R, (4)

a—0t

The above distributional equality indicates that at any point ¢ there exists
an fBm with parameter H(t) tangent to the mBm. Moreover, since By (u) ~
N (0, C?u?" 1) the infinitesimal increment of the mBm at time ¢, normalized by
a®  normally distributes with mean 0 and variance C?u?7(®) (4 € R ,a — 0%).

The increments of the mBm are no longer stationary nor self-similar; despite
this, the process is extremely versatile since the time dependency of H is useful
to model phenomena whose punctual regularity is time changing.

From a financial viewpoint one can think of H(t) in a suggestive way as
a "memory” function, i.e. as the degree of confidence the investors nourish in
the past. High values of H(t) correspond to trends (or low volatility phases),
i.e. to periods in which the past information weighs in the investors’ trading
decisions; low values of H(t) are associated to high volatility periods, in which
prices display an antipersistent or mean reverting behaviour because of the quick
buy-and-sell activity that is typically induced by uncertainty. Standard financial
theory is recovered when H = %, case in which the mBm reduces to the Brownian
motion. The level of risk coupled with a financial time series is therefore framed
into a dynamical perspective in which it can change from point to point, even
in a strong way. What makes the difference here is not much and not only the
type of investment (bond, stock, derivatives) but the time.
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3 Pointwise estimation of the Holderian regularity of the
mBm

Given a sample path of the mBm, one of the main problems is estimating the
function H(t) from actual data. To deal with this problem one could think at
adapting the traditional estimators of H available in literature in order to shadow
the dynamics of H(t). The weakness of this approach resides in the fact that very
large samples are needed to get reliable estimates and in over a long time-span
H is likely to change even widely. So, more efficient estimators are needed in
the case of the mBm. An answer to this problem is provided by Bianchi [7],
who develops the work of Péltier ad Lévy Véhel ([20]) and defines a family of
"moving-window” estimators of H(¢) based on the k-th absolute moment of a
Gaussian random variable of mean zero and given variance Vi (the variance of
the unit lag increment of a mBm). Given a series of length N and a window of
length &, the estimator has the form

k i -
_ log (Qk/ZF (54 VH/2) — log (% Y imis | Xn - Xj,N|k>
s () = klog (N —1)

forj=t—46,..,t—1; t=0+1,...N; k>1
Thanks to its good rate of convergence O (6_% (log N )_1), (5) allows reliable
estimates even for very short ¢’s. The family of estimators (5) was proved to be

correct and normally distributed as

™ 02
§k2In? (N — 1) 2k (T (£1))” )

o? being the variance of a Gaussian random variable defined as a proper rescaled
sum. Toilsome computations show that when H = % the variance of the estimator
reduces to

Var(H; y(t)) = 5K In® (V \/17?) RESE (F (2k2+1> - % {F (k—gl)r? )
7

HE () ~ N (H(t)» (6)

and the optimal value of k is deduced by minimizing the last relation. So one
finds that the minimum of (7) takes place when k = 2, value which will be used
in the empirical application discussed below. An idea of the way the estimator
(5) work is provided by Figure 1. Panel (a) shows a sample path generated by a
mBm with sinusoidal functional parameter (four periods were considered, with
H(t) ranging in the interval [0.2, 0.8]); panel (b) shows the variations of the signal
(notice the bursts of variance corresponding to low values of H(t)); finally, in
panel (c¢) the continuous line is the functional parameter and the zigzagged line
is the functional parameter estimated by filtering the original signal through (5),
setting § = 30.
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(a) Signal
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(c) Estimated pointwise Holder exponent

Fig. 1. Estimation of the Holderian function of a simulated mBm

4 The portfolio’s H(t)

In this section we derive the portfolio’s H(t) and write it as a function of the
H(t)’s of individual assets.
As usual, let

N
;=Y o.X,; (8)
s=1

denote a portfolio of N assets, each characterized by its own functional parameter
SH(’{q’n(t) (s =1,...,n) and with unit variance at time n.

We set k = 2 because it is easy to show that this value minimizes the estima-
tor’s variance when H = 1/2. In this way the estimator of the portfolio’s H (¢)
can be written as a function of SH(’{q’n (t) and it reads as:
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In fact, let dIl; , = Il — II; = Ea dXs. ;4 denote the portfolio’s incre-

ments, where dX, ;4 := X j4q — ij One has
t—1 | N 2
> | X asdXs g
1 j=t—5ls=1
I __ N TRGan
It n( ) . =
2In (" )
q
N 2 t—1 2 t—1 N-—1
Elas_ Xti 5de 3 q+2 Z < s 21 Z+ apar|dXp i qlldXrjql
s= j=t— p=1r=p
_ _ln K2(5—q+1)
21n <L*1)
q

From (5) it readily follows that

t—1
2
K%5—q+1)_< q )

and therefore

t—1 N—-1 N
2 z > 2 apa7|prJquXrJq|
—§p=1r=p+

—25HZ | (1) e
) + eTemrEsy

e = 2 (22)
q
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A more insightful way of writing relation (10) again exploits (5), from which
it is easy

(10)

Z ldXp, 5,1 Z IdeqI

j=t—3¢ 11’1'
K?(0—q+1) and  —, H(?,q,n(t) _ KZ(‘S q+1)

—pH5 g0 (t) = m m

Summing up side by side we get

In

1
Z ldXp j.ql* 32 1dXr 4l

—pH3 o (t) = HE (1) = R (s
d,q,m r 445,q,n — 21 (@)
and therefore
2
(n — 1) (o HE g, () H g \/Z] t—o ‘dXPJ q| ZJ t—5 |er»J}q|
q K26 —q+1) '
from which it follows:
t—1
n— 1\ OO+ @) 2 Al 14Xl
q Prrd = 7R3 (5 — g+ 1)

and by substituting in (10) one gets (9), where the factor p clearly represents
the correlation of the absolute increments of the process.

5 The dynamic optimization problem

In order to cope with the optimization problem we use the relationship between
the portfolio’s H(t) and the functions H () of each asset included in the portfolio
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itself as developed in the previous Section. The procedure intervenes when the
H(t) value decreases under a fixed threshold. This dynamic approach, combined
with a control on the level of return, is based on the assumption that it exists
an inverse relation between the value of the portfolio’s H(¢) and its exposure to
risk. In other words, since high values of H(t) are indicative of trends, once the
procedure excluded that the trend is negative, one can use this information to
rebalance the portfolio in order to control its level of risk. Let us denote by L,
B and S the liquidity, the bond and the stock components of the portfolio, by
ITx the set of indexes pertaining to the investment of type X (X = L, B or
S), by N the number of assets in the portfolio, by @ the (fixed) ratio of assets
of type X, by rp(t) the log price of asset k at time t and A the length of the
window. Equipped with this notation, the risk-minimizer portfolio manager has
to solve the following constrained problem

maXHHf7q7n(t)
ay
s.t.
> ke, Ok = at
dokerrs Ok = o’
Dokelly Ok = a”

OékZO

(11)

al+a*+af =1

a0 >0

which means to determine the vector (aq, ..., ay) defining the H-optimal port-
folio.

At each time t the algorithm checks whether the portfolio’s H(t) is lower than
the fixed threshold. If not the portfolio is mantained, otherwise it is rebalanced
using the new weights determined by solving the optimization problem. For the
constrained optimization we used an extension of primal interior point methods,
which applies sequential quadratic programming techniques to a sequence of
barrier problems. Trust regions are used to ensure the robustness of the iteration
and to allow using the second order derivatives. The software was developed in
MatLab environment at the L.I.S.A. 4, using the function fmincon (see [23])
already implemented in the optimization toolbox.

4 The computer lab for advanced scientific computing operating within D.I.Me.T. The
authors aim a special thank to dr. Augusto Pianese and to dr. Alexandre Pantanella
for the algorithm implementation.
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6 Application

In order to estimate the risk dynamic, we started using three portfolios complying
with the Italian laws on pension funds investments. The analyzed portfolios were
characterized by strong differences in terms of returns variability and therefore
in the risk profile. In the maximum and medium risk portfolios were included
investments in stock components traded in over the counter markets and in non
OECD countries. We used daily data from 30/09/2003 to 19/04/2007.

Table 1 shows the fixed ratios of the portfolios’ components (@, @’ and

a”).

Table 1. Composition of the three portfolios

Portfolio Liquidity Bonds Stocks
Minimum risk 10% 90% 0%
Medium risk 10% 70% 20%

Maximum risk 10% 40% 50%

The portfolio composition respected the investment limits imposed by Italian
regulation (over the counter and non OECD assets). The minimum risk portfolio
was characterized by a larger investment of 90% in bonds (Bond PE 22.5%, Arca
MM 22.5%, Arca RR 22.5%, Arca TE 22.5%), 10% liquidity (Libor 5%, Arca
BT 5%), with a very low standard deviation value showing the low risk profile
offered.

The medium risk portfolio was composed of 70% bonds (Bond PE 17.5%, Arca
MM 17.5%, Arca RR 17.5%, Arca TE 17.5%), 10% liquid assets (Libor 5%,
Arca BT 5%) and 20% stocks (Mibtel 2.8%, Ibm 2.8%, Nasdaq 2.8%, DowChem
2.8%, Ibovespa 2%, Shangai 2%, Google 2.8%, Kospi 2%. It included stocks
component traded in OECD unregulated markets (2% Kospi) and in non OECD
regulated markets (2% Ibovespa, 2% Shangai) This portfolio was characterized
by an intermediate risk.

The third portfolio (maximum risk) was composed of 10% liquid assets (Libor
5%, Arca BT 5%), 40% bonds (Bond BDPE 10%, Arca MM 10%, Arca RR
10%, Arca TE 10% ), 50% stocks (Mibtel 8.8%, IBM 8.8 %, Nasdaq 8.8%, Down
Chem 8.8%, Ibovespa 2%, Shangai 2%, Google 8.8%, Kospi 2%). It included
stocks component traded in OECD unregulated markets (2% Kospi) and in non
OECD regulated markets (2% Ibovespa) In spite of its strong bonds component,
this portfolio presents high returns variability expressed by an high standard
deviation value.

Figure 2 displays the global asset return and the estimated H(t) values of
the three initial portfolios. As expected, the return increases with the risk of the
portfolios (panel (a)) whereas high values of H(t) are associated with a low a
priori risk (panel (b)).
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In order to define a rebalancing strategy, we developed a procedure work-
ing as follows: given a threshold H*, at each time we test whether the current
estimation of H(t) is below the fixed threshold, which means that - under the
assumptions of our model - the portfolio is going subject to an excess risk. In this
case, we rebalance the portfolio solving the optimization problem (11). Other-
wise we maintain the current portfolio. Notice that the last constraint of problem
(11) is meant to guarantee a minimum positive return ¢ for the portfolio; the
condition is necessary because the sole H(t) does not give information about the
direction of the local trend, which can be negative as well as positive. The strat-

)

I
oasH = Maximum iz
= = = Medium rigk
coee Minimum gk

[ 2]

015

—— Mad mum rizk
11 = = = Medumrizk
s Minimum rigk

Fig. 2. Global asset return and the estimated H (¢) values of the three initial portfolios

egy described above was applied to the three portfolios with different thresholds
0.75 < H* <0.90 and ¢ given by the daily rate of return equal to the five-years
average Gross Domestic Product (GDP), using A = 0. Obviously, the number of
rebalancings strongly depends on the thresholds H* and ¢ (they increase with
the former and decrease with the latter). An example of the results produced
by the strategy is shown in Figures 3-6, obtained setting H* = 0.85. Figure 3
displays the values of H(t) for the rebalanced portfolio (continuous line) and
for the initial portfolio (dotted line). The vertical bars below indicate the times
in which the rebalancing has occurred. Observe that a convenient choice of the
assets heavily modifies the risk profile, even of .2817 (at day 279). It is obvious
that the reduction of risk reflects in a lower return, as shown in Figure 4 which
displays the global asset return of the initial and the rebalanced portfolios (the
maximum difference is under 0.1 on a time horizon of three years). Figure 5
displays the risk-return profile of the portfolios; since differently from the tra-
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ditional Markowitz’s model here we use H(t) as a proxy of the risk level, the
risk-dominant rebalanced portfolios are located in the upper right area of the
graph. It is apparent the effect of the rebalancing strategy, which forces upward
H(t) (solid squares) with respect to the values of the initial portfolio (empty cir-
cles). Finally, Figure 6 shows the ’s of the rebalanced portfolios. In this regard,
observe that the optimization problem (11) does not contain constraints about
over the counter and non OECD assets. This means that the new portfolios gen-
erally do not comply the limits imposed by Italian regulation concerning the a
priori risky markets; nonetheless, they are less risky than the initial portfolio’.

H(t) dynamics of the maximum risk portfolio with threshold H=0.85
The vertical bars indicate the epochs of rebalancing
1 T T T T

Rebalanced portfolio

Initial portfolio

0.95— —
oo %, ; ; Sy A

0.85—

HHD)

08 s = : B L N B

U1 LI

0 100 200 300 400 500 600 700 800 900

Fig. 3. H(t) dynamics of the maximum risk portfolio with threshold H = 0.85

The analyzed portfolios deserve a couple of further comments. First, in all
cases the values of H(t) are significantly far from the central value assumed by
standard financial theory. This is consistent with a number of works, but here -
differently from what occurs in the case of single stocks or indexes - the values
are also significantly above . Second, large variations characterize the estimates;
for the minimum, the medium and the maximum risk portfolios the ranges are
respectively 0.162, 0.164, 0.136. Again, this is inconsistent with the models as-
suming a constant value of H and strongly suggests a dynamical approach to
portfolio management. Looking at things with more detail one realizes that the
estimates of H(t) seem to cluster towards low values. This is reflected by the
negative skewness of the distributions: -0.61, -0.68 and -0.59 respectively for the
minimum, the medium and the maximum risk portfolios.



Global asset return in pension funds. ..

Global Return of the initial and rebalanced portfolios
Maximum risk portfolio with threshold H=0.85
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Fig. 4. Global Return of the initial and rebalanced portfolios Maximum risk portfolio
with threshold H = 0.85

Return-risk profile
Maximum risk portfolio, threshold H=0.85

0.85—

- " = Rebalanced portfolio
Initial portfolio

0.65
-0.015

~0.01 ~0.005 ) 0.005 0.01 0.015
Daily return

Fig. 5. Return-risk profile. Maximum risk portfolio threshold H = 0.85
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Weights of the portfolio

Assels

Time

Fig. 6. Weights of the portfolio. The assets are the following: 1—Libor; 2—Arca BT
3—Bond PE; 4—Arca MM; 5—Arca RR; 6—Arca TE; 7T—MibTel; 8—IBM; 9—Nasdaq
10—DowChem; 11—Ibovespa; 12—Shangai; 13—Google; 14—Kospi.

7 Concluding remarks and further developments

The September 2001 market crisis caused the failure of some pension funds in
the USA and Europe. A debate about the financial investment limits and the risk
structure of pension funds was opened. Several analysis highlights the tendency
of the Funds to increase the portfolios risk in order to obtain higher values of the
expected global asset return. Some economic theories study phenomena like as a
moral hazard problem because of accounting rules which encourage Pension Cor-
poration to assume excessive risk. Many authors emphasize that pension funds
have to maintain a prudent profile because the social function (in particular for
the first pillar) prevails over the speculative function. In general, financial laws
use mutual fund regulations to determine the limits of investments in risky fi-
nancial instruments. Moreover, regulations are often qualitative and do not use
quantitative methods.

In order to investigate the regulation potency, in our applications we use invest-
ment portfolios compliant with the Italian laws on pension funds. The results
highlights how Italian pension fund regulation permits investments whit very
different risk degrees.

A dynamic approach is introduced in order to constantly balance the invest-
ment portfolio to control the risk evolution. The risk dynamic is analyzed using
a multifractional Brownian motion to describe the log price of the global asset
portfolios. We use the function H (t) to evaluate the volatility level in the instant
t: when the estimation of H(t) is below the fixed threshold H*, an optimization
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problem is applied to rebalance the portfolio over the time in order to control
the volatility of global asset return. It’s important to note that the procedure
respond a volatility changes in a quick time using only the lag data because of
the convergence proprieties of H(t). The applications show that using this pro-
cedure to control the excess of risk, a cost in term of lower global asset return is
payed. An interesting development of this work will be to investigate the rela-
tionship between the level of maximum volatility required H* and the reduction
of returns using our strategy.
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