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Abstract. In this paper we propose an iterative method to solve an
optimal control problem, with fuzzy target and constraints. A solving
method is developed for such type of problem, under quite general hy-
potheses. The algorithm is developed in such a way as to satisfy as best
as possible both the target function and all the constraints. It consists
of an iterative procedure, which modifies the admissible region with the
aim to increase at each step the global performance. Even if the pro-
cedure is quite general, the algorithm can be applied only if a method
exists to solve a crisp parametric sub-problem obtained by the original
one. This is the case for a quadratic-linear target function with linear
constraints, for which some well established solvable methods exist for
the crisp associated sub-problem. The algorithm is particularized to this
case, and a numerical test is proposed, showing the quick convergence to
the optimal solution.

Keywords. Fuzzy programming, quadratic optimal control.

M.S.C. classification. 90C70.
J.E.L. classification. C61.

1 Introduction

This paper deals with fuzzy optimal control problem (FOCP). The formulation
of a FOCP combines both elements of vagueness or ambiguity in the target
or in the constraints and the solving methods for optimal control problems.
Given the theoretical difficulties that arise in the solution methods for optimal
control problems, few fuzzy extensions were proposed for such cases. We mention
only few contribution in the field of optimal control and dynamic programming
problems; see [9], [15], [18], [20], [22], [23], [24], [26].

In the specialized literature, fuzzy optimization problems are often classified
into vagueness or ambiguity problems, see [11]. In vagueness problems, fuzzy goals
and constraints are considered, and usually a satisfaction degree is obtained both
for the target function and for the constraints; see [2] and [33]. Conversely, in
ambiguity problems some of the coefficients are fuzzy numbers. Some example
of the latter case can be found in [5], [13], [19], [21]. In this paper we shall fo-
cus the attention on problems with vagueness, sometimes known as possibilistic
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optimization problems. In this case, it is required that both the target func-
tion and the constraints satisfy as much as possible some required performances,
represented by fuzzy numbers, each of them defined by a suitable membership
functions. From this point of view, they are similar to goal programming. Subse-
quently, the values of the membership functions are aggregated by the mimimum
triangular norm (t-norm MIN), see [32], obtaining the best compromise solution.

In so doing, the optimal solution represents the best compromise among the
satisfaction degrees of both the objective function and the constraints. In this
direction, many contribution appeared in the past, and the interested reader
can refer to the surveys presented in [11], [13]. This approach can be particu-
larly useful for real world decision problems, where objectives and constraints
are expressed in a heuristic way.
In what follows, an iterative algorithm for fuzzy optimization problems is pro-
posed and applied to a particular case of optimal control problem. In particular,
the original problem is decomposed into a set of crisp sub-problems, each of them
depending on a parameter λ. The sub-problems are subsequently solved, and the
value of the parameter is adjusted at each iteration, in such a way as to converge
to the optimal solution. Thus, this iterative approach requires a solving method
for the related parametric crisp sub-problems. It can be found that, under some
quite general hypotheses, the algorithm converges to the optimal solution in a
finite number of steps; see the Propositions 1 and 2 in Section 3.

A wide class of problems that can be solved in this way is the class of
quadratic-linear static and dynamic problems with linear constraints. Let us
remark that the class of the quadratic optimization problems covers a lot of
practical problems in the real world, which justifies the great effort put in the
past to develop quick and efficient numerical algorithm.

The paper is organized as follows. Section 2 describes the fuzzy optimization
problem. The algorithm is described in Section 3 together with some theoretical
result. Section 4 consider the quadratic-linear optimal control problem. Finally,
in Section 5 a test simulation is proposed, showing the quick convergence of the
proposed algorithm to the optimal compromise solution.

2 Fuzzy optimization problem

Consider the following mathematical programming problem:
{

minx∈Xf(x)
gi(x)≥0 (1)

with x ∈ Rn, gi : X → R, i = 1, ..,m, and f(x) is convex function. Let U ,
the admissible region of problem (1), be a convex set. The problem (1) can be
extended to a possibilistic optimization problem, where the borders that differ-
entiate satisfactory from unsatisfactory regions are not rigid thresholds, but are
represented by suitable fuzzy numbers. To this aim, the objective function and
the constraints need to be intended in fuzzy sense, see [30], [31], [32]. That is,
an optimizing solution has to satisfy as most as possible both the target and the
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constraints, namely to maximize the minimum degrees of the target function
and the ones of all the constraints1.

Using a symbology widely applied in the field of fuzzy optimization, the fuzzy
version of the problem (1) can be written as:

{
m̃inx∈Xf(x)
gi(x)≥̃0

(2)

In what follows, such a problem will be referred as FMP (Fuzzy Mathematical
Programming problem). Let the membership functions µ0(z), µi(z) represent the
satisfaction degrees of the target and of the constraints respectively. The fuzzy
mathematical problem (2) can be converted into the crisp non linear problem:

max
x∈X

C(x) (3)

where C(x) represents the global satisfaction degree:

C(x) = min{ν0(x), ν1(x), ..., νm(x)} (4)

and:

ν0(x) = µ0(f(x)), νi(x) = µi(g(x)) (5)

for i = 1, .., m. This problem is equivalent to the following one, in the space
Rn+1, see [30]:

{
maxx∈X,λ∈[0,1] λ
νi(x) ≥ λ, i = 0, ..., m

(6)

The satisfaction degrees assigned to each constraint and to the target func-
tion are usually represented by continuous and (almost everywhere) differentiable
monotonic fuzzy numbers. In particular, µi(z) : R → [0, 1], for i = 1, .., m are
increasing functions, and µ0(z) : R → [0, 1] is a decreasing function. The follow-
ing piecewise linear functions are two of the most commonly used for monotonic
membership functions (S-type and Z-type fuzzy numbers respectively, see [29]):

µ0(z) =





1, z ≤ p0
z−c0
p0−c0

, p0 < z ≤ c0

0, z > c0

(7)

µi(z) =





0, z ≤ pi
z−pi

ci−pi
, pi < z ≤ ci

1, z > ci

(8)

with pi < ci, i = 1, .., m. Many methods were proposed to solve the problem (6);
see the quoted references.

1 Besides the minimum t-norm, other aggregation operators could be used to compute
the global satisfaction degree, see [16], but the minimum operator is commonly used.
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In this paper an iterative algorithm is presented, partially following the ap-
proaches proposed by [28] and [25] to the linear programming problem. The
method is based on an iterative algorithm, that requires to compute the solution
of a parametric crisp sub-problem.

3 An iterative algorithm for FMP problems

In most cases, the non linear problem (6) can be difficult to solve analytically.
To this aim, an alternative method is proposed, based on an iterative procedure,
under the hypothesis that an associated crisp sub-problem can be solved.

First of all, consider the following parametric problem Pλ, ∀λ ∈ [0, 1]:
{

minx∈X f(x)
νi(x) ≥ λ, i = 1, ..,m

(9)

Let be Ωλ the admissible region of the problem (9) and xλ the solution of the
problem Pλ. Note that the admissible region of the problem (9) is included in
the admissible region of the following unconstrained problem Pf (unconstrained
in the sense that the parametric constraints νi(x) ≥ λ are not included):

max
x∈X

νo(x) (10)

If (10) has a solution xf such that ν0(xf ) ≤ mini{νi(xf )}, then such solution
cannot be ameliorated and C(xf ) = ν0(xf ).
Note that the original FMP problem loses its interest if the problem P0 does not
admit the global minimum, as showed by the following example. As a matter of
fact, consider the FMP problem:

{
mĩnx

1
x

x≥̃3
(11)

where:

µ0(z) = e−z2
(12)

and:

µ1(z) =





1, 3 ≤ z
z − 2, 2 ≤ z < 3
0, z < 2

(13)

We can write:

ν0(x) = e−
1

x2 (14)

ν1(x) =





1, 3 ≤ x
x− 2, 2 ≤ x < 3
0, x < 2

(15)
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In this case, both the FMP problem (11) and its unconstrained related sub-
problem (10) have no solution, as it can be easily checked. Really, the problem
Pλ has no solution, ∀λ ∈ [0, 1]. As a matter of fact, the satisfaction degree
C(x) = min{ν0(x), ν1(x)} becomes, for x ≥ 3: C(x) = ν0(x) = e−

1
x2 , since

ν1(x) = 1, ∀x ≥ 3, and its minimum does not exist.
However suppose that the membership function (12) is changed as follows:

µ0(z) =





1, z < 2
4−z
2 , 2 ≤ z < 4

0, z ≥ 4
(16)

the optimal solution now exists, and it is given by all the points of the unbounded
interval [3,+∞).

To avoid similar meaningless cases, we suppose that ∀i = 0, ..,m, ∃ci such
that µi(z) = 1, ∀z ≥ ci or ∀z ≤ ci; this implies that the target function and
each constraints are completely satisfied if a threshold is reached, as in (7), (8).
Moreover, we require that {x ∈ X : ν0(x) = 1} 6= ∅, and that νi(x) admits a
minimum, i = 1, .., m. From a practical point of view, those hypotheses are not
serious limitations.

Let Iλ(f) be the level set of a given function f(x) : Rn → R, x ∈ X:

Iλ(f) = {x ∈ Rn : f(x) ≥ λ} (17)

We can now enunciate the following Propositions 1 and 2.

Proposition 1. For each λ ∈ [0, 1], λ1 ≥ λ2 implies Ωλ1 ⊆ Ωλ2 .

Proof. If λ1 ≥ λ2, then νi(x) ≥ λ1 implies νi(x) ≥ λ2 and therefore Ωλ1 =
{x ∈ X : νi(x) ≥ λ1, i = 1, ,m} ⊆ {x ∈ X : νi(x) ≥ λ2, i = 1, .., m} = Ωλ2 . ¦

Proposition 2. (Necessary optimality condition). The problem (6) admits
a global optimal solution x, in correspondence to a value λ ∈ [0, 1]. Furthermore,
νi(x) ≥ λ, ∀i = 0, 1, ..., m, and ∃i ∈ {1, ..., m} : νi(x) = ν0(x) = λ.

Proof. A ⊇ B implies max{r(x) : x ∈ A} ≥ max{r(x) : x ∈ B}. Putting
A = Ωλ1 , B = Ωλ2 , and r(x) = ν0(x), on the basis of Proposition 1, we get that
λ1 > λ2 implies:

max{ν0(x) : x ∈ Ωλ2} ≥ max{ν0(x) : x ∈ Ωλ1} (18)

Let x∗ be the solution point of problem (6) and suppose that nevertheless
ν0(x∗) > mini{νi(x∗)}. Due to the continuity of ν0(x) and νi(x), i = 1, ...,m,
also t(λ) = max{ν0(x) : x ∈ Ωλ} is a continuous function, and therefore, for
(18), it exists a point x∗∗ such that ν0(x∗) ≥ ν0(x∗∗) > mini{νi(x∗)} and
ν0(x∗∗) = t(λ′) = max{ν0(x : x ∈ Ωλ′} with ν0(x∗) > λ′ > mini{νi(x∗)}. Be-
ing min{νi(x∗∗)} > min{νi(x∗)}, i = 0, 1, .., m, we conclude that if ν0(x∗) >
mini{νi(x∗)} then x∗ cannot be the optimal solutions. Analogous proof holds if
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ν0(x∗) < mini{νi(x∗)}. Therefore, if x∗ is the optimal solution, then ν0(x∗) =
mini{νi(x∗)}. ¦

Note that the condition stated by the above Proposition 2 is only necessary. In
fact, it is very easy to define a function that in every point of its domain satisfies
such a condition, even if all those points are not minimizer ones. Referring to
(7), (8), this is the case of the function f(x) : R → R, with m = 1: f(x) =
p0−c0
c1−p1

(x− p1) + c0, which satisfies ν0(x) = ν1(x) for p1 ≤ x ≤ c1, even if no one
of these points is a minimizer.

The sufficient condition implies the Pareto optimality for each admissible di-
rection. If we define J(λ) = {j ∈ 1, ...,m : νj(x̄) = λ}, the sufficiency condition
requires that ∀v ∈ Rn, with ‖ v ‖= 1, ∃ε > 0 so that, if (x̄ + δv) ∈ X with
0 ≤ δ ≤ ε, at least one of the following two conditions be satisfied:

a) f(x̄ + δv) ≥ f(x̄)
or:

b) ∃i ∈ J(λ) : νi(x̄ + δv) ≤ νi(x̄).

Obviously, the condition a) implies ν0(x̄ + δv) ≤ ν0(x̄). Moreover, if µi(z),
µ0(z), f(x), gi(x) are differentiable in x̄, from the formulated hypotheses it fol-
lows µ′0 ≤ 0 and µ′i ≥ 0, and the two above conditions become:

a.1) ∂ν0(x̄)
∂v ≥ 0, that is vT · ∇ν0(x̄) = µ′0[f(x̄)] · vT · ∇f(x̄) ≥ 0, from which

vT · ∇f(x̄) ≤ 0

a.2) ∃i ∈ J(λ) : ∂νi(x̄)
∂v ≤ 0, that is vT · ∇νi(x̄) = µ′i[gi(x̄)] · vT · ∇gi[x̄)] ≤ 0,

from which vT · ∇νi(gi(x̄)) ≤ 0.

The optimization algorithm is based on Propositions 1 and 2. First of all,
suppose that an algorithm exist to solve the parametric problem Pλ, ∀λ ∈ [0, 1].
Let xf , xλ be the values of the solution of the unconstrained problems Pf , (10),
and of the sub-problem Pλ, (9), respectively. The algorithm modifies at each
iteration the value of λ in such a way as to increase the value of the satisfaction
degree.

Then, if the hypotheses of Proposition 2 are satisfied, the following bisection
algorithm can be applied to solve the FMP problem.

Bisection algorithm

a) solve the unconstrained problem Pf : xf = argmaxxν0(x) (given the stated hy-
potheses, the existence of a solution is guaranteed). Being ν0(xf ) = 1 by hypoth-
esis, compute the value ν(xf ) = min{ν1(xf ), .., νm(xf )}; if ν0(xf ) ≤ ν(xf ) then
stop, and the solution is optimal with satisfaction degree C(x0) = ν0(xf ) = 1,
and cannot be ameliorated; otherwise (ν(xf ) < ν0(xf )), set λmin = ν(xf ),
λmax = ν0(xf ), λ = λmin+λmax

2
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b) solve the parametric problem Pλ, (9), and compute the values ν0(xλ),
ν(xλ) = min{ν1(xλ), .., νm(xλ)}. If | ν0(xλ) − ν(xλ) |< ε, with ε > 0, then
stop; the optimal solution is reached, with x∗ = xλ and satisfaction degree
C(x∗) = ν0(x∗) ∼= ν(x∗), and λ∗ = λ. Else:

c) if ν0(xf ) > ν(xf ) then set λ ← λ+λmax

2 , λmin = λ, goto b). Else (ν0(xf ) <
ν(xf )):

d) set λ ← λ+λmin

2 , λmax = λ, goto b).

Some remarks are in order:

i) The condition | ν0(xλ)− ν(xλ) |< ε checks for the equality of the satisfac-
tion degrees for target and constraints, see Proposition 2.

ii) Naturally, if λ∗ = 0, it means that the admissible region of problem (6) is
empty.

iii) The algorithm implements a simple dichotomic approach. To avoid un-
desired instability some checks are necessary, and this justifies the use of λmin,
λmax which represents at each iteration the minimum and the maximum value
respectively for the satisfaction degree of the constraints. The value of λ for the
next iteration cannot be less than λmin, neither greater than λmax. This can
happen if at the actual iteration the membership degree of the target suddenly
decreased too much, and the simple dichotomic method in this case can produce
instability computing a value of λ less than λmin, or greater than λmax. In this
case, see steps c) and d), the value of λ is forced to an intermediate value among
λmin or λmax and the actual value of λ (usually equal to the satisfaction degree
of the constraints, that is ν(xλ)).

iv) Propositions 1 and 2 ensure that the algorithm converges in a finite num-
ber of steps. In fact, updating the value of λ as in step d), the convergence of
the algorithm is assured in at most log2

1
ε steps 2. Anyway, more sophisticated

algorithms can improve the speed of convergence, see [10] , but they are beyond
the scope of this paper.

v) Given the hypotheses, in the optimizing point the sufficient condition is en-
sured, because starting from xf the algorithm moves toward the (unique) global
optimizing point.

Conversely, if f(x) is not a convex function, the algorithm converges only to
local optimizing points, for which the previously stated necessary and sufficient
conditions are verified, even if they are not in general, global optimizing points.

2 Of course a first iteration is necessary to solve the unconstrained problem Pf .
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4 The quadratic-linear FOCP problem

The proposed algorithm could be used to solve both linear and non linear FMP
and FOCP problems. The solution of an Optimal Control Problem, see [1], im-
plies the research of function in such a way as to minimize a target index, in the
most cases expressed into an integral form. In the linear case many algorithms
exist, see for instance [3], [17], [27] and the references therein. On the other side,
the optimization problem (9) can be difficult to be solved in the non linear case,
and the previous algorithm cannot be applied. In some particular cases the crisp
parametric sub-problem is a standard programming problem, whose solution can
be easily obtained, and then the proposed iterative algorithm can be applied.

This is the case of the quadratic FMP and FOCP problems, say QFMC and
QFOCP respectively, both of them widely used in the real world applications. We
only mention, in the static case, the maximization of expected returns in portfolio
theory, and the quadratic optimization problem that arises in the learning phase
of a Support Vector Machine [7], while in the dynamic case the optimal control
problems for industrial regulators and for economic policies.

In this Section, the iterative algorithm developed for the general case in
the previous Section will be particularized to the QFOCP case. For the sake of
notation simplicity, we limit to analyze the minimum energy quadratic optimal
control problem with linear dynamic and constraints. In this case, the dynamics
is represented by a linear crisp equation (with fixed initial state), while the
linear constraints are the final condition are represented by fuzzy constraints.
Of course, this is not a theoretical limitation, since the general case of quadratic
control problem can be treated in the same way. Then the minimum energy
QFOCP (2) can be written as:





m̃inu0,..,u{T−1}J(u0, .., uT−1) = 1
2

∑T−1
t=1 u′tQtut

xt+1 = Atxt + Btut dynamic equation, t = 0, .., T − 1
xo = x0 initial condition (fixed)
xT ≥̃x̄ final state condition
Gtxt + Htut≥̃bt linear constraints, t = 1, .., T − 1

(19)

with x0, xt, xT ∈ Rn, ut ∈ Rm, Qt ∈ Rm×m, At ∈ Rn×n, Bt ∈ Rn×m,
Gt ∈ Rr×n, Ht ∈ Rr×m, bt ∈ Rr.

Moreover, let be assigned the membership functions µ0(z), µT (z), µt(z). From
(5) if follows that:





ν0(u0, .., uT−1) = µ0(J(u0, .., uT−1)
νT (xT ) = µT (xT )
νt(xt, ut) = µt(txt + Htut − bt).

(20)

In what follows, we suppose that the conditions for the convexity of the
target function are satisfied. To this purpose, the reader can refer to [1] for a
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complete description of the necessary conditions. In this case, disregarding the
linear constraints, a global minimum can be obtained for the crisp problem,
using the feedback-feedforward method based on the Riccati equation, see again
[1]. Let us now consider the fuzzy problem. The region U is a convex set. From
the propositions 1 and 2, and the convexity of the target function, an optimal
solution exists and the proposed algorithm can be used. The crisp parametric
sub-problem (9) becomes a quadratic-linear problem with linear constraints, and
can be easily solved using the same standard techniques based on the Riccati
equation.

To this purpose, we suggest, among other methods, the so called penalty
function, see [5], [14], that, roughly speaking, builds an unconstrained problem
adding to the target function some terms, each of them referring to an un-
satisfied constraint. Every term is formed by the squared constraint equation
Axi − bi = 0, multiplied by a positive value (the penalty) whose value is in-
creased at each iteration. The unconstrained modified problem is then solved,
and if the solution violates some constraint, the relative penalty is augmented,
otherwise the algorithm stops (the optimal solution is reached).

Under some general hypotheses, usually satisfied in the quadratic-linear case,
this solution coincides with the one of the original constrained problem, see [10].
Since in the quadratic-linear case the constraints are linear, the penalty terms
are quadratic, and the modified (penalized) target function remains a quadratic-
linear (and convex) function. Then its optimum value can be easily computed,
since we refer to an unconstrained problem. It is remarkable that the penalty
function method requires an inner loop to reach the optimal solution in the steps
a), b) of the QFMP iterative algorithm.

However many other methods exist to solve a linear-quadratic constrained
problem, but their description is beyond the scope of this contribution. The
reader can refer to the extensive literature on the topic.

Anywise, for what above said, the sub-problem (9) becomes for the quadratic-
linear case (19):





min1
2

∑T−1
t=1 u′tQtut

xt+1 = Atxt + Btut, xo = x0

νT (xt, ut) ≥ λ
νt(xT ) ≥ λ

(21)

where νt(xt, ut) = µt(Gtxt + Htut − bt ≥ 0), νT (xT ) = µT (xT ≥ x̄).
Since µt(z), µT (z) are increasing S-type fuzzy number, the constraints νt(xt, ut) =

µt(Gtxt+Htut−bt) and νT (xt, ut) = µt(xT ) can be written as Gtxt+Htut−bt ≥
infIλ(µt) and xT ≥ infIλ(µT ). Thus the problem Pλ, can be written as the fol-
lowing QFMP with linear constraints:
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



min1
2

∑T−1
t=1 u′tQtut

xt+1 = Atxt + Btut, xo = x0

Gtxt + Htut − bt ≥ infIλ(µt)
xT ≥ infIλ(µT )

(22)

Being satisfied the hypotheses of the Proposition 2, an optimal solution surely
exists.

Note that even if the minimum energy QFOCP, the extension to more gen-
eral type of QFOCP is straightforward.

5 A numerical test for the minimum energy linear
QFOCP

The proposed algorithm was tested using the following time-invariant minimum
energy QFOCP, with T = 2:





m̃in1
2 (u2

o + u2
1)

xt+1 = 0.5xt + 2ut, x0 = 4
xT ≥̃9̄
ut≤̃2, t = 1, 2

(23)

where the membership functions of the target function and of the constraints
(final state and control variables) are given by:

a) target function:

µ0(z) =





1, z ≤ 4
−0.5z + 3, 4 < z ≤ 6
0, z > 6

(24)

b) final state constraint:

µT (z) =





0, z ≤ 6
1
3z − 2, 6 < z ≤ 9
1, z > 9

(25)

c) control variables constraints, equal for both the two control variables (so
they are not indicized with the subscript t) as in (19)):
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µ(ut) =





1, ut ≤ 2
−0.5ut + 2, 2 < ut ≤ 4
0, ut > 4

(26)

with t = 1, 2.

Being z = u2
o +u2

1, it is ν0(u0, u1) = µo(u2
0 +u2

1), moreover νT (xT ) = µT (xT ),
ν(u0) = µ(uo), ν(u1) = µ(u1).

The target function is convex, and the problem verifies all the other hypothe-
ses formulated in the previous Sections to guarantee the applicability and the
convergence.

At the iteration n. 0, the problem Pf , min 1
2{u2

o + u2
1} with optimal solution

u0 = u1 = 0, and z = 0 gives ν0(u0, u1) = ν(u0) = ν(u1) = 1 and νxT
= 1. Then

ν(u0, u1) = 0 and λmin = 0, λmax = 1, thus λ1 = λmin+λmax

2 = 0.5, see the first
row in Table 1. From (22), (23), and from (24), (25), (26) the problem Pλ can
be formulated as:





min1
2 (u2

o + u2
1)

xt+1 = 0.5xt + 2ut, x0 = 4
ut ≤ −2λ + 4
x2 ≥ 6λ + 6

(27)

For the subsequent iteration n.1, with λ = 0.5, the optimal solution is given
by u0 = 6

5 , u1 = 12
5 with z = 18

5 . Then, being ν0(u0, u1) > ν(u0, u1), it follows
that λ2 = λ1+λmax

2 = 0.5+1
2 = 3

4 , see the second row in Table 1. The updated
value of λ is now used for the iteration n.2, and so on, as presented in each row
of the Table 1.

The iterative algorithm was implemented in MatLab language, using the
Quadratic Programming routine QP. With the value ε = 0.01, the algorithm
converges to the solution in six steps.

The obtained results are presented in Table 1, where each rows corresponds
to a complete iteration of the procedure. The first column reports the iteration
counter, the second and the third ones contains the value of the minimizing
solution, u0, u1. The fourth column reports the value of the target function at
time t, while the following four columns report the membership degrees of the
the three constraints and of the objective function. The column 8 reports the
minimum of the membership degrees of the constraints, the column 9 and 10 the
values of λmin, λmax, finally the last column reports the value of λ which will



52 Silvio Giove

be applied in the next iteration, λt+1.

Table 1. Results of the bisection algorithm

t λt u0 u1 z νT ν(u0) ν(u1) ν0 ν λmin λmax λt+1

0 0 0 0 0 0 1 1 1 0 0 1 0.5

1 0.5 1.2 2.4 3.6 0.5 1 0.8 1 0.5 0.5 - 0.75

2 0.75 1.4 2.8 4.9 0.75 1 0.6 0.55 0.55 - 0.75 0.62

3 0.62 1.3 2.6 4.22 0.62 1 0.7 0.89 0.62 0.62 - 0.685

4 0.685 1.35 2.7 4.54 0.685 1 0.65 0.73 0.65 0.685 - 0.717

5 0.717 1.37 2.75 4.72 0.717 1 0.62 0.64 0.62 0.717 - 0.733

6 0.733 1.39 2.77 4.8 0.733 1 0.61 0.6 0.61 ... ... ...

Note that the second constraint, ν(u0), is completely satisfied at each iter-
ation; in fact, at each iteration the variable u0 is inferior than 2. Even if this
example is rather simple, nevertheless it exhibits a rapid convergence to the
optimal solution. Moreover, observe that the crisp problem, after some straight-
forward algebraic manipulations, can be put in the following form:





min 1
2 (u2

o + u2
1)

u0 ≤ 2
u0 + 2u1 ≥ 8

(28)

no solution exists, since the admissible region is clearly empty. As usual in FMP
problems, the introduction of membership functions for both the target and
the constraints relaxes the crisp constraints, admitting a partial violation of
them. Of course, a price needs to be payed, that is, a partial violation has to be
accepted. Anywise, in this case where no solution exists for the crisp problem,
it is possible to obtain a solution that at least maximize the global decision
maker satisfaction. In other cases, even if a crisp optimal solution exist, the
fuzzy solution can be better than the crisp one, maximizing the decision maker’s
own global performance represented by the aggregated satisfaction degrees of
both the target and the constraints.

In the proposed numerical example the optimal satisfaction degree is given
by 0.733, a value that can be considered a good compromise solution. Naturally,
lower satisfaction degrees become more and more unacceptable; for very low
values, the compromise solution can become completely unsatisfactory.

6 Conclusion

This paper proposes a bisection algorithm for the solution of a fuzzy optimal
control problem, where the target function and the constraints satisfaction de-
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grees are computed by means of suitable fuzzy numbers. The optimal solution
can be obtained by the solution of a parametric crisp sub-problem, varying at
each iteration the value of the parameter.

Based on some natural hypotheses on the membership functions and on the
target and the constraints, the convergence of the algorithm is assured in a finite
number of steps. The algorithm was next applied in the case of the minimum
energy fuzzy quadratic optimal control problem with linear constraints. A simple
simulation test showed satisfactory convergence to the optimal solution.

Possible future extensions regard other type of target function, like the linear-
fractional case [8].
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