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Abstract. The nature of the relationship between bond’s duration and
its term to maturity is somewhat complex and, contrary to what our
intuition would suggest, there is not always a direct relationship between
duration and maturity, in the sense that an increase in maturity does not
necessarily entail an increase in duration. For bonds selling below par,
an increase in maturity has the following effects: duration first increases,
it reaches a maximum and then decreases. For this maximum we provide
an explicit formula based on the Lambert W function.
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1 Introduction

There are two main reasons why duration is a basic concept in bond analysis
and management: it provides a useful information on the bond’s riskiness and it
is essential to the procedure of protection against unforeseen changes in interest
rates.

A bond’s duration is a concept first introduced in 1938 by F. Macaulay (see
[7]) to provide more complete summary information about the time structure
of a bond than term to maturity. Maturity provides information only about
the time of final payment and thus gives an incomplete description of the time
pattern of all the cash flows of a security.

For fixed-coupon bonds, duration can be intuitively defined as the average
maturity of all bond payments, where each payment is weighted by its present
value.

It can be simply shown that, for a given change in interest rates, percentage
changes in the bond prices vary proportionately with duration. It follows that
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the relation between changes in bond prices and term to maturity depends on
the relationship between duration and maturity.

Duration is heavily dependent on the coupon rate, the rate of interest, and
maturity. The effects of a change in coupon rate or in interest rate on duration
are similar, and can be simply analyzed: an increase in the coupon rate or in
interest rate will lead to a decrease in duration.

The nature of the relationship between bond’s duration and its term to ma-
turity is somewhat complex and contrary to what our intuition would suggest,
there is not always a direct relationship between duration and maturity, in the
sense that an increase in maturity does not necessarily entail an increase in
duration.

At the present time the true nature of the relationship between duration
and maturity is well known to financial literature, even if almost every book
discussing the dynamics of bond prices report statements as the following “ ... for
a given change in yields, the fluctuations in market price will be greater the longer
the term to maturity” (see for example W.C. Freund [3] at page 51 and G.W.
Woodworth [9] at page 191 and more recently H.S. Stoll, R.E. Whaley [8] at
page 135).

A precise mathematical examination of the exact form of the nature of the
relationship between duration and maturity is carried out in G. Hawawini [4]
and [5] where many interesting properties are obtained, through a closed form
formula which permits to derive the duration directly.

A more tractable closed form formula for the duration is presented in G.O.
Bierwag [1] and in O. de La Grandville [6]; in this case the duration is split
into two parts: the first term is the duration of a perpetual bond or consol
that promises a regular payment each period forever and the second one is an
adjustment factor which can be either negative or positive.

The rest of this note is organized as follows. Section 2 deals with the definition
of duration’s concept and with some closed form formulas. The relationship
between a bond’s duration and its term to maturity is analyzed in Section 3.
This analysis is summarized by discussing a set of properties. In particular we will
see that, for bonds selling below par, an increase in maturity has the following
effects: duration first increases, it reaches a maximum and then decreases. For
this maximum we provide an explicit formula based on the Lambert W function.

Of course, we cannot claim to have seen every paper written on applications
of W function, but of those we have seen, this contribution presents the first
application of Lambert function in finance.

2 Duration and its closed formulas

Duration considers a coupon bond as a set of zero coupon bonds with consecutive
maturity payments equal to the coupon payments plus a higher payment at the
final date. If the evaluation is carried out at the beginning of a coupon period,
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the duration is defined as
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where:

— D(:,-,-) is the duration,

— (C; is the amount of coupon payment at time t,
— B, is the reimbursement value,

— t is the t-th payment,

— 14; is the rate applicable for period t,

— n is the maturity date.

This formulation can be seen as a weighted average of the terms of payments.
Each period is weighted by the present value of the corresponding payment.

In the following we make the simplification that the term structure of interest
rates is flat (i; = ¢ for all ¢); moreover we suppose that the coupon is constant
and the reimbursement value is equal to the face value.

In such hypothesis we can rewrite (1) as

D(Cy,i,n) = :EZt.ct(Hz) ¢ (2)
=1 t=1
where
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designates the value of the bond; in particular we have: Cy = C fort =1,...,n—

1, C, = C+ B, i.e. C, indicates the global cash flow to be received at maturity
n.

Duration has an appealing physical interpretation: it is the center of gravity
for the payments in present value.

A main usefulness of duration stems from the equation

1+:0B
B o0 @)

D=—

which points out that duration is a measure of the riskiness of a bond.
The use of equation (2) to compute the duration of bonds, especially those
having a long maturity, is very tedious; it is often convenient to use a closed
form formula, as opposed to an open form which involves sums. Moreover, the
analysis of other main properties of duration becomes enormously simplified if
we consider the expression of duration in a closed form.
The seminal paper of Macaulay [7] presents an interesting, even if incomplete,
sensitivity analysis based on the following closed form
1 (A+49)/r+n(1+1/r—1Q+1)/r)

D(r,i,n)zl—kg— (1+d)" —1—1/r+ (1 +14)/r

()
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where r = C'/F is the coupon rate. In order to obtain (5) you can consider the
ratio

C 2C 3C nC nkF
T T (1+4)2 + (144)3 et (IT+a)» + A+~ |
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summing the terms in the numerator, and in the denominator, of this ratio and
substituting C/r for F', we immediately find formula (5).

Hawawini [4] and [5] present another closed form formula which is used to
examine analytically the relationship between a bond’s duration and its term to
maturity.

The Hawawini’s expression for duration is

(1 + d)agr +n(i —r)(14+d)~"

Dlrin) = )

where azy; is the present value of an n — period annuity at a rate i.
In order to prove (6) you can write duration as

_ FO(B/F) .\
then consider the ratio
B 1-(Q+)™" i N R U
F_Tii +i(1+z) = ; (8)
and hence
o8
= =- [(r F =)+ ) ) 4 (= Pl + )~ (14 )]
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(9)

Substituting (9) and (8) in (7) we get immediately the closed formula (6).
We will also find it convenient to rearrange (6) as
D ar+(@G—r)(1+4i™™"

n r+(—-r)1+i)" (10)

with o = (1 + @)az;/n.
A third closed form formula for a bond’s duration is

N 1 nl—-r)—(1419)
Dlnr) =14 54+ =+

(11)

This formula is presented and analyzed both in [1] and in [6].
To prove (11) we start with the ratio

% =L - )T ()T = % {rll=Q+)"]+it+)7"}. (12)

7
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Duration as a function of maturity
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Fig. 1. Duration of a bond as a function of its maturity for ¢ = 10 % and coupon rates
r=0,0.1,0.2,2,10,20 %.

Taking the logarithm, we have

B
log = = —logi+log{r[1—(1+4) "] +i(l+i)™"}. (13)
The derivative with respect to i is
dlog(B/F) Odlog B 10B _ (14)
di 9  BOi
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Since D = —%%—?, multiplying the derivative just above by —(1 + 1), we

obtain (11) after simple simplifications.

3 Duration and maturity

The closed form formulas (5), (6) and (11) are more tractable than the definition
(2) and can be used to examine the complex relationship between the bond’s du-
ration ant its term to maturity. In the following this analysis will be summarized
through a set of properties.

Property 1. D < n. For zero coupon bonds or for bonds with one-period coupon
bearing, duration is equal to maturity. In this special case duration increases
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with maturity. For all other bonds (r > 0, n > 1), duration is strictly shorter
than term to maturity. This property can be immediately proved by examining
(10).

Property 2. ¥r,D(r,i,n) — 1+ % as n — oo. This property is quite astonishing
and states that the duration of a perpetual bond is equal to 1+ i~ irrespective

of its coupon rate. Indeed, referring to the closed form formula (11) and in
particular to the ratio (adjustment factor)

n(i—r)—(141)
1+ =1+’

(15)

we can see that the numerator is an affine function in n, while the denominator
is an exponential one.

Property 3. If r > i then D’(r,i,n) > 0. The duration of a coupon bond selling
at par (i = r) or above par (i < r) increases monotonically with its term to
maturity and approaches the limit 1+¢~1. Indeed, if » = i the adjustment factor
becomes equal to —1/(r(1+ r)"~1) and thus D'(r,r,n) > 0, Vn. On the other
hand, if r > ¢ the ratio (15) is always negative and tends monotonically to zero.

Table 1. Maximum values in duration for below par bonds with i = 5% and 7 = 10 %.

1=10.05 1=0.1
r n*  D*(r,0.05,n%)|| r n*  D*(r,0.1,n")
0.001 | 71.94 51.02 0.001 | 41.50 30.90
0.002 | 64.94 42.64 0.002 | 36.93 26.22
0.003 | 60.01 38.18 0.005 | 31.74 20.67
0.005 | 55.89 33.07 0.006 | 30.87 19.67
0.006 | 54.75 31.33 0.010 | 28.79 17.07
0.010 |52.94 27.19 0.020 | 27.34 14.10
0.020 | 57.37 22.87 0.050 | 32.95 11.45
0.030 |73.38 21.38 0.060 | 38.18 11.18
0.040 |125.51 21.01 0.090 |120.49 11.000012
0.045 |230.50 21.00 0.095 |230.49 11.00
0.049 |1070.5 21.00 0.099 |1110.5 11.00

Property 4. If r < i (i.e. for below par bonds), then the duration first increases;
it crosses the right line 1 + 1/i and arrives at a maximum; then it decreases
toward the limit 1+ 1/4. In other words, let n* the maximum point and D* the
maximum value; we have

D'>0  when n<n* (16)
D <0 when n > n*.
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Looking at the ratio (15) we can easily prove that the duration of a coupon
bond selling below par initially increases and for n = (1 +¢)/(i — r) intersects
the asymptote 1 + 1/i; then it reaches a maximum value D* for n = n* and
finally decreases toward the limit value 1 + 1/i.

Property 5.

o W) a0k Lambert W o expl= =0 /m)
n =
a-b

where: @« = i —r, b = log(1 + i), and W(-) is the Lambert W function. This
function satisfies the equation

Lambert W (z) - eLambert W@) — 4

and can thus be used to express solutions of transcendental equation involv-
ing exponentials or logarithms (for more details on Lambert W function, please
consult [2]).

For coupon bonds below par, using (17) we can directly compute the abscissa
of the maximum value D*, in opposition to assertions given in [7] at page 50
and in [6] at page 86.

Properties 3, 4 and 5 are geometrically shown in figure 1 which points out
the complex relationship between a bond’s duration and its term to maturity,
as the coupon rate varies.

The rationale underlying properties 3, 4 and 5 is easily explained with some
physical interpretation of bond’s cash flows. If the coupons are large, duration
increases monotonically with maturity, but for small coupons duration initially
increases and then decreases. Indeed, adding one payment entails obviously to
shift on the right the center of gravity, but also to delay the reimbursement of
the principal. The resultant of these two forces which move in opposite direction
obviously depends on their intensity.

Table 1 contains other relevant information for the bonds with ¢ > r. We can
see that as r increases toward ¢ the maximum value of duration D* decreases
monotonically and tends to the limit value 1 + 1/i, while the ascissa n* first
decreases and then rises greatly. Using the explicit formula (17), this particular
behavior of n* and D* have been checked for i = 1,2,...,20%.
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