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– three managed to exit, but seven are still treated – raising the question of whether cost reduction
has had any unintended negative effect on the quality of treated RHSs. I answer this question
using the Two-way Mundlak approach. Compared to the classic Two-way Fixed Effects, this method
explicitly models the staggered nature of the policy by allowing me to analyze how the treatment
effect varies along different dimensions. Further, it allows the estimation of the long-run impact
of PdRs. Overall, I find that Piani di Rientro managed to reduce costs. However, cost reduction
was not followed by a boost in the efficiency of RHSs and the appropriateness of care provided, as
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1 Introduction

The rising concern about the sustainability of public finances, and in particular, the need to respect
budget balances, has aroused the attention of policymakers worldwide, especially after the onset of the
2007-2008 financial crisis. Some countries have implemented different measures to cut down public
expenditure, particularly for healthcare, drastically. Processes aimed at rationalizing healthcare spend-
ing are, in fact, commonly undertaken to restore budget balance, especially in countries with publicly
funded health services. The main reason is that countries usually devote much of their GDP to health
expenditure. For instance, in OECD countries, before the COVID-19 pandemic outbreak, healthcare
expenditure accounted, on average, for 8.8% of their GDP expenditure.

If, on one side, healthcare spending represents a natural candidate to curb public expenditure; on
the other side, the increasing demand for access to healthcare facilities, coupled with the need for
healthcare systems to provide high-quality care, has spurred numerous studies to investigate whether
the financial crisis and, more specifically, budget cuts to healthcare systemsmay have adversely affected
the health of the population (see, for instance, Quaglio et al. (2013), Franklin et al. (2017), Golinelli et al.
(2017), and Arcà et al. (2020)), as higher health expenditure is usually associated with better health
outcomes (OECD, 2021).

Thus far, the health community has not agreed upon a single and worldwide-accepted definition of
quality care (WHO, 2006, 2018). One commonly employed definition, however, comes from the United
States Institute of Medicine, which defines quality care as "the degree to which health services for in-
dividuals and populations increase the likelihood of desired health outcomes and are consistent with
current professional knowledge" (Institute of Medicine, 2001). Moreover, the United States Institute of
Medicine acknowledges that effectiveness, efficiency, equity, patient-centredness, safety, and prompt-
ness are crucial dimensions of care.

Besides providing high-quality services, healthcare systems need also to be efficient. Especially in
countries with limited resources for healthcare, improving the efficiency of health systems is one of the
major goals for policymakers to face the increasing demand for health services. It is, therefore, crucial
to define, for this paper, what we mean by efficiency. Even though it is hard to measure efficiency in
health – as what is crucial for patients are not outputs but outcomes – two broad categorizations of
efficiency have been proposed over the years. The first is technical efficiency, which is concerned with
maximizing the number of outputs/outcomes, keeping fixed the level of inputs. The second category,
allocative efficiency, is concernedwith how resources are allotted. More specifically, the aim is to achieve
the best health outcome by incurring the least possible cost (OECD, 2016). For the rest of this paper, I
will use the term efficiency to refer to allocative efficiency, as the purpose will be to understand whether
budget cuts to healthcare have had any unintended consequences on health outcomes.

Italy represents an interesting scenario for understanding whether healthcare spending cuts may
have unintended effects on health outcomes. Italy perfectly aligns with the average OECD country,
spending around 8.7% of its GDP on healthcare (OECD, 2021). Moreover, despite the Italian National
Health Service (NHS) being a multi-tier system characterized by substantial variability across regions
– entitled to managing the Regional Health Service (RHS) – in terms of the quality of services provided
(Aimone Gigio et al., 2018), the introduction at the beginning of the 2000s of Essential Levels of Assis-
tance (ELAs) ensures comparability of healthcare provision across regions. In addition, although one of
the main goals of having a decentralized system was to formally attribute regions the responsibility for
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the RHS’s financial stability, the Central Government has continued to finance ex-post the large deficit
run by regional governments over the years. This has led public health expenditure and, in turn, the
total deficit for public health expenditure to grow dramatically. In this context, Piani di Rientro sanitari
(or Recovery Plans (RPs) in English) were first introduced in 2007 to counteract the increased spending
and restore the financial stability of RHSs. The aim of this policy was twofold: on the one side, to
restore budget balance, and on the other side, to guarantee (or improve) ELAs. Since these two targets
are incoherent unless efficiency gains are feasible, as pointed out by Depalo (2019), it is legitimate to
ask whether introducing such plans has had any negative consequences on health outcomes.

Sixteen years after the first Piano di Rientro (PdR) was signed, ten out of twenty-one RHSs have
undergone at least one round of the policy. Three regions managed to exit, whereas seven remain under
a Recovery Plan. There is a wide consensus that introducing such a policy reduced costs; by contrast,
the effects in terms of quality and efficiency are mixed. On the one hand, treated regions report a
deterioration in the quality of services provided after the plan’s introduction (Calabrò, 2016). On the
other hand, the Central Government registers positive effects regarding efficiency and no deterioration
in the quality of the RHSs. However, some treated regions are still reported to underperform in terms of
ELAs (SiVeAS, 2014; Aimone Gigio et al., 2018). Similar contrasting evidence is found in the literature
on RPs (e.g., Bordignon et al. (2020); Cirulli and Marini (2023)).

This paper aims to provide novel evidence regarding the causal impact of RPs on the quality and
efficiency of RHSs, adding to the existing literature investigating the impact of budget cuts on healthcare
on health-related outcomes (Heijink et al. (2013); Golinelli et al. (2017); Arcà et al. (2020) and many
others). Specifically, it contributes to the existing literature in several ways. First, to the best of my
knowledge, this is the first study evaluating the long-run impact of the policy. Despite two existing
studies – Guccio et al. (2023) and Beraldo et al. (2023) – already employ data until 2018, as I do in the
following analysis, they only provide an estimate of the overall effect of PdRs, thus failing to gauge the
cumulative impact of the policy. Assessing the long-run effect is paramount to carrying out a sound
policy evaluation. While on one side, effects on cost containment may be immediate to see – as regions
undergoing a PdR are obliged to cut costs to access additional funding – this policy requires a structural
reorganization of the RHS. As such, any sizeable effect on the quality of services provided and efficiency
may take time to be detected, as also pointed out by Calabrò (2016). Besides, compared to Guccio et al.
(2023) and Beraldo et al. (2023), I do not focus only on mortality rates or interregional patient mobility;
this paper offers a more complete picture by also considering other indicators of quality, as well as
efficiency and costs.

Second, the paper also contributes to the ongoing debate of whether Piani di Rientromanaged or not
to guarantee ELAs. Specifically, awider set of quality indicators is considered. Besides considering some
of the variables directly part of the MoH’s ex-post monitoring, the effect of PdRs on other indicators
is also evaluated. The policy might have indirectly affected these latter variables through reduced
budgets available to treated regions. In particular, the hypothesis I want to test is whether regions have
strategically outperformed on those indicators that discriminate on their ability to receive funds. If this
is true, following the introduction of RPs – for treated regions – a deterioration of those indicators that
are not part of the MoH evaluation process should be observed.

The third contribution of this paper will be to rely on theDiD decomposition proposed by Goodman-
Bacon (2021), which allows the researcher to understand why the classical Two-Way Fixed-Effects
(TWFE) estimator – which is commonly used in the existing literature of RPs – may not yield a con-
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sistent estimator of the causal estimand of interest and what may be possible sources of bias. Different
studies proved that the estimator for the average treatment effect on the treated (ATT ) obtained by the
TWFE is likely to be severely biased in a context with variation in treatment timing, as the one under
scrutiny (Borusyak et al., 2021; Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021; Sun and Abra-
ham, 2021; De Chaisemartin and d’Haultfoeuille, 2022a,b; Roth et al., 2023). Thus, failing to consider
the staggered nature of the policy and the fact that the treatment effect is likely to vary over time and
across regions may lead to invalid inference. Therefore, from an applied perspective, this study may
also add to the strand of the literature on DiD (please refer to Roth et al. (2023) for a thorough review)
by providing empirical evidence on the importance of incorporating the staggered entry set-up nature
of the policy when carrying out program evaluation exercises.

Fourth, to avert the issue of having an inconsistent estimator of the ATT and to be able to es-
timate the causal effect of Recovery Plans, the staggered nature of the policy will be considered. In
addition, heterogeneity of the treatment effect across regions and over time will be introduced. The
former will allow us to understand whether regions that underwent a more abrupt reduction of costs
experienced different impacts regarding the quality and efficiency of the RHS. The latter, instead, will
let us estimate the long-run impact of the policy. To this end, I will exploit the estimator proposed by
Wooldridge (2021), the Two-Way Mundlak (TWM). Although different studies have thus far evaluated
the impact of Recovery Plans, to the best of my knowledge, this is the first paper that explicitly models
the staggered nature of the policy and allows for heterogeneity of the treatment effect. The only two
papers that, to some extent, introduced heterogeneity are Depalo (2019) and Beraldo et al. (2023). As
far as the first paper is concerned, the author only considered regions first treated in 2007 and only
evaluated the impact of the policy at the end of the first and second rounds of PdRs. Thus, being unable
to consider that some regions left the treatment status over time and, simultaneously, to estimate the
long-run effect. On the other side, Beraldo et al. (2023) exploited the estimator proposed by Callaway
and Sant’Anna (2021) as a robustness check to understand whether the results obtained via their main
identification strategy were in line with those obtained through an estimator that is robust to the pres-
ence of variation in treatment timing. Using Callaway and Sant’Anna (2021), the authors also estimate
heterogeneous treatment effects; however, heterogeneity is only allowed over time and not across re-
gions. Moreover, compared to the studies by Beraldo et al. (2023), I do not focus only on the escape rate
but also consider other indicators. Lastly, I explicitly tackle the issue of having regions entering and
exiting the treatment status at different points rather than assuming that it is irreversible.

Further, the subcluster wild bootstrap proposed by MacKinnon and Webb (2018), which may lead
to improved finite-sample inference in a context with few (treated) clusters, will be employed.

Lastly, since three strong assumptions must be satisfied for the estimator of the ATT obtained
via the TWM approach to be consistent, building on Depalo (2019), results obtained via the estimator
proposed by Manski and Pepper (2018) will also be presented. This latter estimator will allow us to
understand whether the results obtained using the parametric estimator are robust to the relaxation of
the main identifying assumptions, as it permits the researcher to directly incorporate the uncertainty
about the validity of the "exact invariance" assumption – exploited to construct the counterfactual
outcome (e.g., the parallel trend assumption) – by deriving bounds for the treatment effect. There are
two main advantages of this approach. First, the exact reason the identifying assumption may not hold
must not be known to the researcher. Second, it allows us to estimate region-specific treatment effects,
thus shedding light on the results obtained via the parametric estimator.
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I view the fact of performing inference using both the TWM and milder non-parametric assump-
tions as one of the strengths of this paper, as this allows me to understand how the results are sensitive
to the relaxation of the identifying assumptions.

Overall, the main findings show that RPs managed to reduce costs. Cost reduction was pursued
through decreased hospital beds and hospitalization rates. However, contrary to what was expected
from the policymaker, except for Abruzzo and Calabria, the policy did not enhance the efficiency of
treated RHSs. In addition, a deterioration in the quality of services was observed in regions that un-
derwent a PdR. These results also hold in the long run and are robust to different sensitivity exercises.
Moreover, the larger negative effects (in terms of quality) were documented in regions that experienced
a more drastic reduction in the hospitalization rate.

This paper is structured as follows. Section 2 outlines the main features that characterize the Italian
NHS and the process that led the Central Government to adopt Recovery Plans. In Section 3, how a
Piano di Rientro works and the objective of the Central Government are exposed. Section 4 reviews the
existing studies on RPs and, more in general, the literature in health economics analyzing the impact
of cost-containment measures on health outcomes. In Section 5, I describe how the dataset used for the
analysis was constructed and the indicators employed. Section 6 reports the methods used to estimate
the causal effect of RPs, whereas Section Section 7 presents different sensitivity exercises. In Section 8,
the main results obtained using both the parametric and the non-parametric approach are presented,
as well as results obtained via different robustness checks. In this latter Section, the results obtained
are also discussed in light of the existing literature. Lastly, Section 9 concludes.

2 Institutional Setting

This section briefly reviews the main features that characterize the Italian National Health Service
(NHS) and the process that led the Central Government to adopt Recovery Plans to curb the excessive
budget deficit for public health spending run by regional governments.

The Italian NHS is a regionally-based system founded in 1978 by bailing out the old service built
on mutual funds, which was running a large deficit. To comply with the Italian Constitution (art. 32),
the system rests on three main guiding principles: universality, equity, and solidarity. The legislator’s
primary purpose was to provide uniform services across regions and guarantee equitable access to all
citizens, regardless of socio-economic conditions. The system is (almost) fully funded through general
taxation.1 In addition, it is organized into three hierarchical layers to ensure uniform coverage across
regions. The Ministry of Health (MoH) is responsible for developing national health targets to ensure
that the general principles are met throughout the country. To reach national goals, regional health
departments are entitled to allot spending and to provide benefits packages through Local Health Au-
thorities (LHAs).

Although one of the main objectives of having a decentralized system was to make regional gov-
ernments more accountable for public health spending and thus contain costs, healthcare expenditure
began rising dramatically over the 1980s and at the beginning of the 1990s. In these years, in some
regions, health-related spending exceeded the total amount of funds the region had received from the
State. To counteract the increased spending, starting in the 1990s, the Central Government initiated a

1Citizens who are not exempted are required a (light) form of co-payment – ticket – whose amount is proportional to the
type of service provided.
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process of budgetary decentralization to settle the national deficit to comply with Maastricht Treaty’s
fiscal rules. Different reforms were then implemented to devolve more responsibilities, in managing
the Regional Health Systems (RHSs), to the local governments and to boost efficiency.

This decentralization process culminated with the Riforma del Titolo V in 2001, which formally at-
tributed to regions the health protection and the responsibility to respect budget balance.2 Moreover, to
ensure each citizen was guaranteed a minimum level of health services and that these were comparable
across regions, Essential Levels of Assistance (ELAs) were established at the beginning of the 2000s.3

In the years following 2001, however, the Central Government continued to finance, ex-post, the
large deficit run by local governments. This fact, coupled with the lack of an adequate mechanism
to limit costs by conditioning access to funds, has caused health-related expenditure to start growing
dramatically over time.

To curb the excessive spending run by local governments, the State introduced, with the budget
law for 2005, a set of measures aimed at constraining access to a part of the health-related resources.
Entry was made conditional on evaluating the region’s compliance with the budget balance. In case
of excessive deficit, to gain access to additional funding, the region was forced to identify the imbal-
ance’s potential causes and design a three-year operational plan to restore financial stability through a
structural reorganization of the RHS.4

Nevertheless, these operational plans have never become effective, and the total health expenditure
deficit reached six billion euros only in 2006 (see Figure 1). In this context, the Central Government
made effective, with the budget law for 2007, the Piani di Rientro (PdRs) sanitari.5

Figure 1: Regional deficit for public health expenditure

(a) (b)

Notes: The above figures report the regional deficit for public health expenditure. Specifically, Panel (a) compares the total
regional deficit run by never-treated regions against that run by regions that, at some point, underwent a PdR. Panel (b),
instead, depicts the evolution of the regional deficit by comparing regions that were not-yet-treated against those that were
treated in a given year.

2Nowadays, funds are collected mainly through general taxation and redistributed to regional jurisdictions according to
the population size and the related distribution by age and gender.

3For a thorough review on ELAs, please refer to Torbica and Fattore (2005) and to the Italian Ministry of Health web-
site: https://www.portaletrasparenzaservizisanitari.it/en/prestazionegarantitassn/
prestazioni-garantite-dal-ssn.

4For an in-depth review of the institutional background and all the measured introduced starting from 2005, please refer
to Aimone Gigio et al. (2018), Depalo (2019), and Bordignon et al. (2020).

5Henceforth, I will indiscriminately use the words Recovery Plans, plans, RPs, PdRs, Piani di Rientro, treatment, and
policy.
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3 Recovery Plans

Starting from 2007, regions running a deficit of over 5% (initially set at the 7%) of the overall level of
funding were obliged to sign region-specific Recovery Plans to access financing.

An RP consists of a bilateral agreement between the region and the Central Government (in par-
ticular, the MoH and the Treasury), where the region must identify – via the analysis of the SWOT
(strengths, weaknesses, opportunities, and threats) – all the necessary measures to be adopted to re-
store budget balance while guaranteeing (or improving) the ELAs, which are the RP’s general targets. To
reach general targets, in the RP are also included the specific targets in which the areas of interventions
are outlined, and the operational targets that specify how the specific targets are pursued. Alongside
the actions aimed at a structural reorganization of the RHS included in the plan, treated regions are
likewise required to raise regional tax rates (IRAP and IRPEF ) to increase revenues.

A PdR lasts three years; however, it may be renewed for an additional triennium (round) if the region
does not achieve the predetermined goals. Moreover, in case of an enduring deficit or when objectives
are significantly missed, a commissioner is automatically appointed.6 In this latter case, more stringent
restrictions regarding the RHS’s tax rates and structural equipment are also enforced.

To ensure the plan’s goals are reached, the Central Government provides active support to regions
undergoing an RP in terms of monetary resources and monitoring of the RHS. Regarding financial
resources, the State makes available additional funds for treated regions to avoid a sudden drop in
health-related spending.7 For what concerns the support provided in managing and evaluating the
RHSs, this is carried out by the MoH, in concert with the Ministry of Economics and Finance (MEF),
through a monitoring system (the SiVeAS). This latter consists of an ex-ante monitoring – in which
the Central Government inspects whether all the legal actions that need to be undertaken to restore
financial stability are outlined in the plan – and an ex-post monitoring – through which the MoH
verifies, every quarter, whether the budget balance is being restored and ELAs are being guaranteed.
As also stressed by Depalo (2019), the centralization of this process is a salient aspect of this policy, as
it ensures cross-regional comparability of the targets reached by each region.

The main targets of this policy are: on one side, to reduce management costs and, on the other side,
to increase the efficiency of the RHS and the appropriateness of care provided. To reach these goals,
regions signing a PdR were required to reduce the hospitalization rate and the number of hospital
beds (per thousand inhabitants). Reducing the number of hospital beds was requested to facilitate a
reconversion process towards more appropriate and, simultaneously, less expensive care than hospital
admission. Conversely, following a reduction in the hospitalization rate, an increase in the percentage
of hospital beds effectively occupied and a switch from ordinary to day surgery was expected. Although
similar actions were implemented throughout the country with the budget law for 2007, the reduction
treated regions were required to implement was more prominent, as their starting structural equipment
was higher. Moreover, with the budget law for 2010, for regions under PdRs that (partly) miss the plan’s
target, the automatic hiring stop and turnover freezing became mandatory.

From 2007, ten out of twenty regions have undergone at least one round of Recovery Plans. The first
plan was signed by the region Lazio in February 2007. In the same year, Abruzzo, Campania, Liguria,

6In addition, to ensure the correct execution of the plan, the Central Government may also nominate two sub-
commissioners.

7Please refer to Depalo (2019) for an overview of how these funds were made available.

7



Molise, Sardegna, and Sicilia were also forced to join a PdR. Instead, Calabria, Piemonte, and Puglia
signed an RP in the following years (December 2009, July, and November 2010, respectively). Liguria
and Piemonte met RPs’ requirements in April 2010 and March 2017, respectively, whereas Sardegna
left the plan invoking its special statute in December 2010. On the other side, starting from 2008, some
regions were put under the administration of an external commissioner. These regions are Lazio (2008-
2020), Abruzzo (2008-2016), and Campania (2009-2020). The only two regions which, to date, are still
under a commissioner are Calabria andMolise (from 2010 and 2009, respectively). The complete history
of RPs’ adoption in Italy is summarized in Table 1, in which the situation on September 1st of a given
year is depicted.8

As shown in Figure 1, Recovery Plans’ aim at curbing excessive health-related spendingwas reached.
The total deficit decreased from 6 billion euros in 2006 to less than 2 billion euros in 2018. However, it
is unclear whether cost containment was pursued through an increase in efficiency or due to a deterio-
ration of the quality of the services provided by RHS. Although from the second round of RPs,9 the law
gave both ELAs and financial stability the same importance, the two objectives are incoherent unless
efficiency gains are feasible, as pointed out by Depalo (2019).

More specifically, despite the health community has not agreed upon a worldwide-accepted defi-
nition of quality care (WHO, 2006, 2018), one commonly-employed definition comes from the United
States Institute of Medicine, which defines quality care as "the degree to which health services for in-
dividuals and populations increase the likelihood of desired health outcomes and are consistent with
current professional knowledge" (Institute of Medicine, 2001). For the remainder of the paper, I will use
"quality" to refer to any health service that may lead to better health outcomes.

If, on one side, there is no shared definition of quality in the health literature, on the other side, the
concept of efficiency is even harder to define. According to the economic theory, efficiency is usually
referred to as the relation between inputs (e.g., hospital supply) and either intermediate (e.g., waiting
time) or final outputs (number of life saved, quality-adjusted life years) (Palmer and Torgerson, 1999).
What is crucial for patients are not outputs but outcomes. For this reason, two broad categorizations of
efficiency have been proposed over the years. The first is technical efficiency, which is concerned with
maximizing the number of outputs/outcomes, keeping fixed the level of inputs. The second category,
allocative efficiency, is concernedwith how resources are allotted. More specifically, the aim is to achieve
the best health outcome by incurring the least possible cost (OECD, 2016). For the rest of this paper, I
will use the term efficiency to refer to allocative efficiency, as the purpose will be to understand whether
budget cuts to healthcare have had any unintended consequences on health outcomes.

4 Related Literature

Different studies have tried to analyze the impact of RPs on cost containment and the quality of RHSs.
The consensus is that implementing such plans effectively reduced costs (Aimone Gigio et al., 2018;
Depalo, 2019; Arcà et al., 2020; Bordignon et al., 2020). Conversely, there are mixed findings regarding
the impact of such a policy on the efficiency and quality of the services provided. This is mainly due to

8Results, however, are robust if the situation on June 1st is considered. These results are available upon request.
9In the first edition of PdRs, the "implementationmonitoring" carried out by the Central Government wasmainly targeted

to verify the region’s budget balance.
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Table 1: Evolution of RPs in Italian regions (2007–2021)

Region 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Abruzzo RP RP RPC RPC RPC RPC RPC RPC RPC RPC RP RP RP RP RP
Calabria RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC
Campania RP RP RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RP
Lazio RP RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RP
Liguria RP RP RP
Molise RP RP RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC RPC
Piemonte RP RP RP RP RP RP RP
Puglia RP RP RP RP RP RP RP RP RP RP RP
Sardegna RP RP RP RP
Sicilia RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP

Notes: For each year, the situation on September 1st is reported. RP = if the region is under PdR; RPC = PdR + presence of
commissioner.

different model specifications and identification strategies used by previous studies.10

Exploiting a Two-way Fixed Effects (TWFE) estimator coupled with an IV strategy – using as an
instrument the percentage of citizens complaining about the presence of waste in municipal streets –
to clean for potential violation of the parallel trend assumption, Bordignon et al. (2020) find no statis-
tically significant effect of PdRs on patients’ health outcomes. In particular, the authors employ both
indicators that are part of the ex-post monitoring carried out by the Central Government and variables
that, instead, are not part of the monitoring (such as the mortality rate) as proxies for quality. On the
other side, Cirulli and Marini (2023) – also relying on a TWFE estimator and using the percentage of
citizens disappointed about public transport as an instrument – document an increase in the total mor-
tality rate, suicide rate, mortality rate associated with cancer and heart diseases, and discharge rates
due to psychological issues in treated regions following the introduction of RPs.11 Similarly, exploiting
a Matching Method for Time-series Cross-Sectional Panel coupled with a TWFE estimator, Guccio et al.
(2023) estimate a negative impact of the policy on the total mortality rate. Beraldo et al. (2023), on the
other side, using a TWFE estimator, find that introducing PdRs has had unintended negative conse-
quences on the escape rate as well. Lastly, using a non-parametric approach, Depalo (2019) estimates a
sudden drop in the total hospitalization rate – in treated RHSs – followed by an increase in the mortality
rate (all causes) by the end of the first round of RPs. Specifically, the reduction in the hospitalization
rate is documented to be larger in those regions experiencing a more considerable decline in health
spending – besides, the larger the drop in hospitalization rate, the higher the increase in mortality.

For what concerns efficiency, instead, Depalo (2019) finds that RHSs’ efficiency – proxied by the
ratio between the hospitalization for the diagnosis-related group (DRG) at high risk of inappropriate-
ness versus those that could not be avoided – did not improve in treated regions by the end of the
first round of PdRs. Similarly, resorting to a Data Envelopment Analysis (DEA), Giancotti et al. (2020)
document that RPs did not impact hospital efficiency – as proxied by the technical efficiency index –
in 2010-2013. In particular, this index is constructed as an output-to-input ratio, where hospital bed
capacity and hospital staff are employed as inputs. The total number of inpatient discharges gives the
output. Conversely, using a similar strategy to Giancotti et al. (2020) and data for 2003-2010, Guccio

10It is worth noting that all existing studies on RPs employ publicly-available data – obtained through the Health For All
database or the MoH – which are already aggregated at the regional level. So, the unit of observation is RHS r at time t.

11It is worth stressing that the two sample periods are approximately the same. Whereas Bordignon et al. (2020) use data
from 2000-2014, Cirulli and Marini (2023) employ only two additional years: 1999 and 2015.
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et al. (2022) discover an increase in inefficiency – where cost inefficiency is estimated using Stochastic
Frontier Analysis – in treated regions in the years following the introduction of such a policy.

All the studies mentioned so far investigating the impact of RPs on the quality of RHSs belong to a
broader literature in health economics that analyzes the effect of healthcare spending cuts on efficiency
and, in particular, on the quality of healthcare providers. For instance, using a 15-year panel on Italian
RHSs, Golinelli et al. (2017) investigate the relationship between per-capita healthcare expenditure and
the total mortality rate. Overall, they find that reducing healthcare spending is associated with an in-
crease in the mortality rate, all else being equal. Similarly, using a 10-year (2004-2014) panel on Italian
regions and exploiting the introduction of PdRs as an instrument to clean for potential endogeneity is-
sues in healthcare spending, Arcà et al. (2020) estimate a 4.5% increase in avoidable mortality following
a €100 cut in per-capita health expenditure. Such an increment in avoidable deaths seems to have been
caused by a drastic reduction in hospital supply (beds and staff) and decreased hospitalization rates.
Furthermore, the authors also document that patients’ mobility flows – mainly from Southern regions
to the Center-North of Italy – increase significantly following a decline in healthcare spending. This is
probably due to a reduced hospital supply in Southern regions after introducing PdRs.

Inter-regional patients’ mobility is, in fact, strongly affected by hospital supply. Using a dynamic
spatial panel data model and Italian hospital discharge records for 2001-2010, Balia et al. (2018) discover
that, ceteris paribus, a larger number of hospital beds in the region of origin decreases the likelihood
of seeking care in another region. At the same time, the outflow toward a given region increases with
hospital supply. If, on one side, an excess of hospital beds is likely to indicate bad management, waste of
resources, and, consequently, low quality of services provided. Conversely, larger hospital bed capacity
may also suggest lower waiting lists.

Regarding the impact of efficiency on health outcomes, Martini et al. (2014) employ 2008-2011 data
on hospitals at the ward level in Lombardia and a three-step estimation procedure to analyze whether
the pressure for cost containment influences hospital performance. Overall, they estimate a larger
mortality rate in more efficient hospitals. At the same time, more efficient hospitals also exhibit lower
readmission rates.

The results presented above are not specific to the Italian context only. Using a panel on 14Western
countries from 1996-2006, Heijink et al. (2013) evaluate the relationship between healthcare spending
and avoidable mortality. The authors report that countries with an expenditure growth above the
average have a larger decrease in avoidable deaths. Similarly, using 2005-2006 data on primary care
trusts in the UK and relying on a Generalized Method of Moments estimation procedure with several
instruments, Andrews et al. (2017) document that mortality (all causes) is highly sensitive to variations
in health spending. In particular, they estimate an elasticity of −0.705 of the mortality rate to variation
in healthcare expenditure.

Analogously to what has been documented for Italy, employing 1996-2015 data from the Spanish
Ministry of Health and Ruhm’s Fixed Effects model, Borra et al. (2020) also report a significant increase
in the mortality rate from circulatory diseases and external causes following a reduction in hospital
supply. Similar results are found in Sweden by Siverskog and Henriksson (2022), who use 2001-2019
data for Swedish regions and a TWFE model to analyze the impact on health outcomes of reducing
bed capacity. Despite bed capacity and deaths having declined nationwide in the period considered,
the largest reduction in mortality rates is documented in regions exhibiting a less pronounced reduc-
tion in hospital beds. Furthermore, the authors also report that providing an additional bed generates
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three additional quality-adjusted life years (QALYs). This latter finding corroborates the hypothesis that
bed capacity is directly linked with patients’ outcomes. Conversely, Cook et al. (2012), exploiting the
introduction of the California Assembly Bill 394 – that mandated the maximum levels of patients hos-
pital staff should nurse –, discovered that decreasing the patient-nurse ratio does not improve patients’
health outcomes.

Overall, the existing studies suggest that measures aimed at reducing costs through reductions in
healthcare spending and hospital supply may adversely affect patients’ health. Moreover, these policies
have usually proven ineffective in promoting health providers’ efficiency. For these reasons, it is crucial
to understand whether the introduction of PdRs has had any unintended effects on the quality of RHSs.
To address this issue, a novel estimation procedure taking into consideration the complexity of the
policy under study will be used (see Section 6). Furthermore, indicators that are both directly part of
the ex-post monitoring and other indicators that such a policy may indirectly impact will be employed.

5 Data

5.1 Data Sources & Sample Selection

A unique dataset gathering information from different administrative sources is built to assess the
impact of Recovery Plans. The percentage of patients (aged 65+) diagnosed with hip fracture operated
on within 48 hours in an ordinary regime and the ratio between the hospitalization for the diagnosis-
related group (DRG) at high risk of inappropriateness versus those that could not be avoided are made
publicly available by the MoH through yearly reports, the Monitoraggio Griglia Lea (MoH, 2014, 2015,
2016, 2017, 2018). Data on Recovery Plans were directly obtained from theMoH’s website.12 In contrast,
all the other indicators of RHSs’ quality and costs, as well as controls, were downloaded through the
Health for All (HFA) software.13 This latter is a database gathering different aspects of the Italian NHS,
made publicly available by the Italian National Institute of Statistics (ISTAT).

Regarding the sample selection, data are already aggregated at the RHS level and include informa-
tion on all 21 Italian RHSs (the 19 regions and the 2 autonomous provinces of Bozen and Trento). As
for the time span, given the availability of a broader pre-treatment period for some of the outcomes of
interest, the maximum number of available pre-treatment years for each dependent variable has been
exploited to improve the estimators’ performance in the following analysis. On the other side, since
up-to-date data are unavailable, the analysis is restricted to the end of the fourth round of PdRs, which
ended in 2018.14 The reasons behind this latter choice are twofold. On one side, the analysis is confined
to the end of the last completed round for which data are available; on the other side, the effects of
the policy do not cumulate to that of the recent Covid-19 pandemic. Overall, at most, 441 region-year
observations are available depending on the outcome under analysis.

12Please refer to https://www.salute.gov.it/portale/pianiRientro/homePianiRientro.jsp
for additional information.

13Further details on the choice of the specific indicators and controls used in the following analysis will be given in the
next two subsections.

14The available last year, to date, is 2019 for most of the dependent variables from the HFA database, 2020 for those from
MEF or MoH.
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5.2 Dependent Variables

Different proxies for quality, which may directly or indirectly affect the population’s health conditions,
are used to understand whether adopting an RP has had any consequences on the quality of RHS.
Besides considering some of the variables directly part of the MoH’s ex-post monitoring, the effect
of PdRs on other indicators is also assessed. The policy might have indirectly impacted these latter
variables through a reduced budget available to the region. In particular, the hypothesis I want to test
is whether regions have strategically outperformed on those indicators which discriminate on their
ability to receive funds. If this is true, following the introduction of RPs – for treated regions – a
deterioration of those indicators that are not part of the MoH evaluation process should be observed.

The first proxy for RHSs’ quality is the hospitalization rate (total and acute), defined as the number
of hospitalizations over the corresponding population multiplied by 1, 000. Hospitalization rates are
directly part of the ex-post monitoring carried out by the Central Government (see Section 3). They are
commonly employed in the health literature as a proxy for healthcare utilization (Depalo, 2019; Arcà
et al., 2020) and as an (indirect) indicator of Quality of Life in patients (Berchialla et al., 2010).

Next, since numerous studies document a negative (indirect) impact of healthcare spending cuts
on deaths (Heijink et al., 2013; Andrews et al., 2017; Golinelli et al., 2017; Arcà et al., 2020), the (total)
mortality rate is also considered as a proxy for RHSs’ quality. The mortality rate under consideration
is measured as the number of deaths (all causes) in a given year divided by the region’s population size
multiplied by 10, 000.

Another indicator of quality that is used in the following analysis is themortality rate from ischaemic

heart diseases – defined precisely as the mortality rate reported above.15 Despite this indicator is not
directly part of the ex-post monitoring carried out by the Central Government, different studies employ
the Acute Myocardial Infarction (AMI) mortality rate – which is incorporated in the indicator under
scrutiny – as an indicator of the quality of the healthcare provider (Pross et al., 2017; Schiele et al.,
2017). Besides, although mortality due to coronary heart disease has substantially decreased over the
last decades, AMI is still among the major causes of death in many OECD countries, including Italy
(OECD, 2021). For this reason, it is crucial to understand whether PdRs had any impact on such an
indicator. In particular, whether the decrease in the mortality rate from ischaemic heart diseases slowed
down following the introduction of this policy.

The free-patient choice is a salient feature of the Italian System, where patients can seek care in
hospitals outside the home RHS.16 Significant inter-regional patient mobility in the ordinary regime
characterizes the Italian NHS – equal to 7.2% of total hospitalizations only in 2020 (MoH, 2020) – with
the Central and Northern regions of Italy being net exporters of hospital care (Balia et al., 2018). The
large fraction of patients from the South seeking care in the rest of Italy indicates enduring differences
in RHSs’ quality. Since "the compensation of net patient flows has generated additional amounts of
financial resources in favor of central-northern regions, and has exacerbated the north-south gradient
in the ItalianNHS" (Balia et al., 2018, p.3), it is interesting to analyze the impact of PdRs on the percentage
of patients migrating to other regions for ordinary acute hospitalization.

The impact of PdRs on the percentage of patients (aged 65+) diagnosed with hip fracture operated on

15In particular, this indicator consists of the following diseases: 410-414 (according to the ICD-9-CM classification); and
120-125 (according to the ICD-10-CM classification).

16Despite patients being required to bear the cost of traveling to another region, the residence region will pay the reim-
bursement for the treatment received according to a compensation scheme based on DRG tariffs.
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within 48 hours in an ordinary regime (in short, % of patients with hip fracture replacement) is also esti-
mated. Numerous studies in the health literature employ this variable as an indicator of the healthcare
provider’s quality (Pross et al., 2017; OECD, 2021), as the quality of life declines significantly after hip
fracture (for instance, see Amarilla-Donoso et al. (2020)). Besides, the % of patients with hip fracture re-
placement is commonly used as a proxy for the healthcare system’s responsiveness. Evidence suggests
that promptly intervening with surgical procedures – within 48 hours from the accident – enhances
patient health and reduces the risks of complications (OECD, 2021). This is because the risk of death
and pressure sores are found to increase with surgical delay remarkably (Moja et al., 2012).

To test whether RPs had any effects on RHSs’ efficiency, following Depalo (2019), the ratio between
the hospitalization for the diagnosis-related group (DRG) at high risk of inappropriateness versus those

that could not be avoided (in short, efficiency ratio) is employed as a proxy for the inefficient use of
healthcare services. Despite it is recognized in the health literature that it is hard to measure healthcare
providers’ efficiency (McGuire, 1987), inappropriate hospitalizations are commonly used to indicate the
misuse of resources (Angelillo et al., 2000; Navarro et al., 2001; Pileggi et al., 2004). Moreover, the MoH
acknowledges this variable as an indicator of the appropriateness and efficiency of services provided;
it represents one of the indicators constituting the Monitoraggio Griglia Lea reports.17

Another valid proxy for the inappropriate use of resources, commonly used in health economics, is
the cesarean sections (c-sections) for first-timemothers (OECD, 2019). While it is well recognized in the
medical literature that c-sections can be lifesaving and, at the same time, necessary surgeries, vaginal
birth should be preferred as a deliverymode in all such cases when there are no complications or specific
reasons (Gregory et al., 2012; OECD, 2019). There are two motivations for this indicator to be used as
a proxy for the inappropriateness of care. First of all, although both the two delivery modes are not
risk-free (Gregory et al., 2012), c-sections are found to be associated with increased risk of mortality for
both the mother and the baby, increased risk of complications, as well as negative short- (e.g., increased
likelihood of developing allergy and asthma) and long-term effects (child cognitive development) for
the baby. This is because c-sections are a more invasive procedure (Polidano et al., 2017; Sandall et al.,
2018; OECD, 2019). Moreover, c-sections represent a more costly procedure than vaginal birth.

The MoH also acknowledges the c-section for first-time mothers as a valid proxy of the appropri-
ateness and efficiency of services provided. It is part of the indicators constituting the Monitoraggio

Griglia Lea reports. Unfortunately, since this latter indicator is available only for 2012-2016, the % c-

sections – defined as the number of c-sections over the total number of childbirth multiplied by 100 –
will be employed as a proxy.18

For what concerns costs, two indicators that are both part of the ex-post monitoring carried out by
the Central Government are employed, the log of current health expenditure and the number of hospital

beds. The former is directly linked to the healthcare expenditure run by the regional government and
the definition of budget balance imposed by the Maastricht Treaty’s rules (Eurostat, 2013). The latter
represents another channel through which management costs can be directly reduced (Aimone Gigio
et al., 2018; Arcà et al., 2020).

17The complete list of DRG classified at high risk of inappropriateness is made available by the ItalianMoH. Some examples
of DRGs considered at risk of inappropriateness can be found in Appendix A.

18To check whether these two indicators convey the same information, I regressed the indicator provided by the MoH (%
c-section for first-time mothers) on the one coming from the HFA (% c-sections), controlling for region and year fixed effects.
The R2 equals .90, suggesting that these two indicators are strongly correlated.
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5.3 Controls

A set of socio-economic variables that might explain differences in the outcome of interests due to
observables was obtained through the HFA software. These include region’s population size, population
distribution by gender, and population distribution by age. It is worth stressing that, as stated in Section 2,
population size and its distribution by age and gender represent the criteria for which the Central
Government allocates funds to the regional jurisdictions.

Following Depalo (2019) and Balia et al. (2018), GDP per capita is also controlled for, as it allows
for accounting for income effects. At the micro-level, GDP might be a good proxy for patients’ ability
to seek care in the private health sector following a reduced quality of services provided in the public
hospital. On the other hand, at the macro-level, GDP might capture that richer RHSs may provide more
appropriate and higher-standards services.

5.4 Potential Effects & Channels

The main objective of RPs is to restore budget balance while guaranteeing the ELAs. To reach this goal,
treated RHSs were required to decrease hospital bed capacity. The idea was that lowering the hospi-
tal supply might reduce the incidence of inappropriate hospitalizations, thus favoring a reconversion
towards more suitable and less costly procedures than hospital admission. However, since budget cuts
to healthcare can leave unaltered the quality of services provided only if the efficiency of the health-
care system improves, it is worth understanding through which channels RPs may have (in)directly
impacted the variables discussed above and, in particular, the potential effects we may observe.

As far as the impact on the hospitalization rate is concerned, if, on one side, a reduction in hospital-
ization rate may suggest that PdRs were effective in cost-containment, as this is one channel through
which this policy works (please refer to Section 3); conversely, a decrease in hospitalization is usually
associated with deteriorated health outcomes (Berchialla et al., 2010; Depalo, 2019; Arcà et al., 2020).

If, on one side PdRs directly affect hospitalization rates, on the other side, the mortality rate from
ischaemic heart diseases is likely to be indirectly impacted by the policy. There are two main channels
through which it is expected that PdRs may have affected this latter indicator. First, the complexity
of the healthcare management and the high risk of re-hospitalization make AMI, and more in general
ischaemic heart diseases, particularly costly for healthcare systems (Kwok et al., 2018; Lobo et al., 2020).
Therefore, it could be the case that healthcare spending cuts may have adverse (indirect) effects on these
outcomes through reduced budgets available to the RHS. Second, previous analyses document that AMI
is sensible to variations in hospital supply. Increasing hospital beds – one of the channels throughwhich
PdRs work – is associated with a lower 30-day readmission rate after AMI (Brown et al., 2014).

As far as the % of patients migrating to other regions for ordinary acute hospitalization, if, following
the introduction of RPs, larger outflows are detected in treated regions (which are mainly regions from
the South of Italy), this would indicate that the perceived quality in the South has deteriorated and that
PdRs have worsened the gradient between the South and the North of Italy in terms of quality of the
NHS. There are two possible channels through which RPs may indirectly affect patient mobility. First,
spending cuts in healthcare expenditure increase the flows from South to North of Italy (Arcà et al.,
2020). Second, there is evidence that the lower supply in the region of origin, the higher the likelihood
of seeking care in another region (Balia et al., 2018).

On the other hand, it is unclear whether PdRs may have adversely affected the percentage of pa-
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tients with hip fracture replacement. On one side, like AMI, also hip fracture repair constitutes a sig-
nificant burden for the healthcare system (Williamson et al., 2017). Therefore, healthcare spending cuts
are likely to indirectly affect this indicator through reduced budget made available to the hospital and
through lower hospital supply (beds and staff). The timely response from the healthcare provider is
found to be influenced by hospitals’ operating theatre capacity, flow, and access (OECD, 2021). Con-
versely, the % of patients with hip fracture replacement is one of the variables part of the specific targets
outlined in RPs. Thus, regions have incentives to monitor this indicator continuously and to ensure
adequate levels of this variable are reached to access financing.

Similarly, whether PdRs may have increased or decreased the cesarean rate is unclear a priori. On
the one side, since this indicator is part of the ex-post monitoring carried out by the Central Govern-
ment, treated regions have economic incentives to ensure that adequate levels for this indicator are
reached. In addition, c-sections represent a more costly procedure than vaginal birth. Therefore, it
could be that a reduction in the % c-sections after the introduction of RPs is detected. On the other side,
the introduction of PdRs may have positively affected the % c-sections. One reason to expect a positive
impact of the policy on such indicator is that, in Italy, cesarean rates are larger in private hospitals than
in autonomous public ones (De Luca et al., 2021). If an increase in the % c-sections is documented fol-
lowing the introduction of the policy, then this could indicate that the perceived quality of healthcare
services provided by public hospitals has deteriorated, pushing more women to seek care in private
ones.

Lastly, hospital beds are usually a proxy for the capital factor used in hospital production (Santías
et al., 2011; Giancotti et al., 2020; Guccio et al., 2022). Therefore, on the one hand, if reductions in the
number of beds are detected (in treated regions) after introducing such a policy, this would indicate
that the policy was effective in reducing costs. On the other hand, reduced beds might also imply a
lower capital factor, which may, in turn, negatively affect patients’ health conditions (Arcà et al., 2020;
Borra et al., 2020; Siverskog and Henriksson, 2022).

6 Empirical Strategy

6.1 DiD Decomposition & Two-Way Mundlak Approach

As pointed out in Section 3, RPs were first introduced in 2007. While seven regions were forced to sign
a PdR in 2007, the remaining three treated regions underwent a PdR in the years following 2007.19 This
framework is often called a staggered treatment adoption set up in the program evaluation literature.

Since this analysis aims to understand whether the introduction of RPs has had any unintended
negative consequences on the quality and efficiency of treated RHSs, the causal estimand of interest
will be the average treatment effect on the treated (ATT ) in periods where the treated regions are
effectively under Recovery Plans.

Most existing studies on Recovery Plans rely on some variation of the classic Two-Way Fixed Effects
(TWFE) estimator – such as the one presented in the following equation – to identify the impact of
RPs on health-related outcomes and interpret the estimated coefficient for the treatment dummy as an

19For the sake of simplicity, in the following sections, the words Regional Health Service and region are employed in-
distinguishably to refer to an RHS. However, one should always remember that there exist 20 regions in Italy, whereas the
number of RHSs is 19, plus the 2 autonomous provinces of Bozen and Trento.
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estimator of the ATT . For the remainder of this paper, Wooldridge (2021)’s notation will be borrowed.
Let us consider the following regression model:

yg,t = βwg,t + cg + ηt + ug,t (1)

where yg,t is (one of) the outcome(s) of interest (discussed in Section 5) for region g at time t, with
g = 1, . . . , 21, and t = yfirst, . . . , 2018, and yfirst = min{t : yg,t ̸= NA ∀g}. That is, yfirst

represents the first year in which the dependent variable of interest is observed (non-missing) for all
the RHSs. Let the random variable wg,t denote a binary treatment with support in {0, 1}. Since the
main goal of this paper is to evaluate the impact of Recovery Plans, wg,t = 1 will then denote whether
region g at time t was under an RP.20 Instead, cg represent unit-specific fixed effects (FE), ηt are year
FE, and ug,t is the error term.

Unless one is willing to make strong – and often implausible – assumptions that go beyond a gener-
alization of the traditional parallel trends assumption to the setting with variation in treatment timing,
it can be proved that the estimated coefficient for wg,t obtained via TWFE is an inconsistent estimator
for the causal estimand of interest in a context with staggered policy rollout (Borusyak et al., 2021;
Goodman-Bacon, 2021; De Chaisemartin and d’Haultfoeuille, 2022a). For a review of which are the
common assumptions made in the program evaluation literature to estimate the ATT , how the TWFE
estimator works, and why the TWFE may be proven to be an inconsistent estimator of the ATT in the
context with variation in treatment timing, please refer to Appendix B.

To estimate the causal effect of Piani di Rientro on the quality and the efficiency of services pro-
vided, I will resort to the Two-Way Mundlak Approach (TWM) first proposed by Wooldridge (2021).
Specifically, Wooldridge, by proving the equivalence between the TWFE and the Pooled OLS (POLS)
estimator applied to a regression that includes time-specific cross-sectional averages and unit-specific
time averages, shows that it is still possible to retrieve a consistent estimator of the ATT within the
simple regression framework – also in a context with variation in treatment timing – by simply in-
troducing heterogeneity. Indeed, similarly to other recently developed estimators (e.g., Callaway and
Sant’Anna (2021)), this approach allows the researcher to estimate heterogeneous treatment effects,
where heterogeneity can be across treatment cohorts, intensities, calendar time, and/or covariates (see
Appendix B.3).

Although different studies have thus far evaluated the impact of Recovery Plans, to the best of my
knowledge, none of the existing studies – except Depalo (2019) to a certain extent – have allowed het-
erogeneity. From the contextual perspective, there are two main reasons why allowing heterogeneity
across regions and over time may be interesting. First, for what concerns heterogeneity over time,
while the salient features of the policy have remained fairly stable over time, the law attributed the
same importance to ELAs and financial stability only from the second round of RPs (the first round
of PdRs mainly focused on restoring the budget balance of RHSs’). In addition, while on one side, ef-
fects on cost containment may be immediate to see – as regions undergoing a PdR are obliged to cut
costs to access additional funding – this policy requires a structural reorganization of the RHS. As such,
any sizeable effect on the quality of services provided and efficiency may take time to be detected, as

20Please note that the reason for using g – rather than i – to refer to a specific region is twofold. On the one hand, this
avoids confusion regarding the level at which the variables were computed since they are already aggregated at the RHS level.
On the other hand, since regions represent the level at which standard errors will be clustered in the following analysis, this
notation will align with that used in the cluster-robust literature (for instance, see Cameron and Miller (2015)).
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also pointed out by Calabrò (2016). Second, while there is no specific reason to expect different effects
across treated cohorts, PdRs are region-specific agreements. Therefore, it may be reasonable that, for
instance, the effect for Calabria is different from the one for Lazio. For this reason, it may be worth
allowing heterogeneity across regions.

To further corroborate the choice to rely on techniques that explicitly consider the staggered na-
ture of the policy, the DiD decomposition proposed by Goodman-Bacon (2021) will be used (see Ap-
pendix B.2 for a review). Specifically, this procedure will allow us to understand why the TWFE esti-
mator may not represent a consistent estimator of the ATT in a context with variation in treatment
timing and what may be possible sources of bias.

Let us consider the following regression model:

yg,t = α +
11∑

s=0
τs (wg,t · intensg,t (s)) +

∑
r

λrdg,r + ηt + ug,t (2)

using the same notation introduced above, yg,t represents (one of) the outcome(s) of interest, wg,t is
a dummy variable taking value equal to 1 if region g at time twas under an RP,α represents the constant,
ηt are year Fixed Effects (FE), whereas dg,r’s are mutually-exclusive cohort dummies indicating when
region g first received the treatment. Since new treated regions are entering the treatment only in 2007,
2010, and 2011, then r ∈ {2007, 2010, 2011}, meaning that d2007 + d2010 + d2011 + dnever = 1. Lastly,
intensg,t(s) = 1{t − eg = s} represents an indicator variable (i.e., a dummy variable) for region g at
time t being s periods away from when it was first treated, and eg = min{t : wg,t = 1}.

Equation (2) can be estimated via POLS. It can be proved that τs in (2) is the estimator of the ATT

(Wooldridge, 2021), where, in this specific case, the ATT is allowed to vary by treatment intensity.
Allowing the treatment effect to vary by treatment intensity will enable the estimation of the long-run
effects of RPs. This is paramount since, as explained above, the policy is structural, and therefore, it
may take time for regions to adjust to PdR-specific requirements as well as for any sizeable effect to be
detected.

However, for τs to be a consistent estimator of the ATT , three assumptions need to hold. The first
assumption requires the treatment to be at an absorbing state. That is, once the region g receives the
treatment, it remains treated for the remainder of the panel (i.e., wg,s ≤ wg,t for s < t). The second,
instead, rules out anticipatory behaviors.

Before stating the following assumption, further notation should be introduced. Let q be the first
period in which the policy is implemented; then, for r ∈ {q, . . . , 2018}, yg,t(r) will represent the
potential outcome for unit g at time t had the policy been introduced by period r (i.e., dg,r = 1),
whereas yg,t(∞) will denote the analogous in period t had the treatment not been received (that is, had
the unit never been treated).

No Anticipation (NA): For each treatment cohort r ∈ {2007, 2010, 2011},

E(yt(r) − yt(∞)|d2007, d2010, d2011) = 0, ∀t < r

This means that, on average, the potential outcomes between treated and never-treated regions are
the same in the pre-intervention period, regardless of when a region is first treated. This is similar to
the strict exogeneity assumption required to estimate FE in panel data models.

Lastly, the third assumption needed for identification is a generalization of the parallel trends as-
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sumption to the multi-period setup with staggered entry.
Parallel Trends (PT): For each dr with r ∈ {2007, 2010, 2011}

E(yt(∞) − yfirst(∞)|d2007, d2010, d2011) = E(yt(∞) − yfirst(∞))

where t = {yfirst + 1, . . . , 2018}, and, as explained above, yfirst is first period in which y is
observed for all regions. This assumption requires the average evolution in the benchmark state to be
mean independent of the treatment status. This must be true for every period relative to yfirst.

Since it is unlikely that the PT and NA assumptions hold unconditionally, following Wooldridge
(2021), the next regression will also be estimated:

yg,t =α +
∑

r

λrdg,r +
11∑

s=0
τs (wg,t · intensg,t (s)) + xgκκκ +

∑
r

(dg,r · xg)γγγr+

(wg,t · ẋg,treat)ρρρtreat + ηt + ug,t

(3)

where xg is a vector including a set of (time-invariant) covariates, ẋg,treat = (xg − µµµtreat), where
µµµtreat = E(xg|wg,t = 1). The idea to center x about the mean of the x’s over the treatment status
ensures that τs represents the ATT (Wooldridge, 2021).21 As explained in Section 5, xg includes the
region’s population size and its distribution by age and gender and GDP per capita. However, since the
TWM allows the inclusion of time-invariant covariates, the median values of the x’s observed in the
pre-treatment period for each region (i.e., before 2007) are used.

Please note that differently from (2), in (3) the ATT ’s are allowed to vary, not only across treatment
intensities but also with covariates. However, in this case, standard errors should be adjusted for the
sampling variation in µµµtreat.22

Introducing x and allowing the ATT to vary also with the covariates allows the researcher to relax
both the PT and NA assumptions and to require them to be valid across subpopulations sharing the
same characteristics.23 That is:

Conditional No Anticipation (CNA): For each treatment cohort r ∈ {2007, 2010, 2011},

E(yt(r) − yt(∞)|d2007, d2010, d2011, x) = 0, ∀t < r

Conditional parallel trends (CPT): For each dr with r ∈ {2007, 2010, 2011} and covariates x,

E(yt(∞) − yfirst(∞)|d2007, d2010, d2011, x) = E(yt(∞) − yfirst(∞)|x)

As far as standard errors are concerned, it is common practice in the DiD literature to cluster stan-
dard errors at the level at which the treatment is assigned (if known) to account for the within-cluster
correlation of the error term (Bertrand et al., 2004; Cameron and Miller, 2015; MacKinnon et al., 2023).
As pointed out by Cameron and Miller (2015), indeed, including FE at the assigned treatment level is
insufficient to purge for all the intra-cluster correlation of the disturbances. Since the treatment assign-

21Note it is sufficient to de-mean the x’s only when interacted with wg,t.
22To do so, the margins’s option, vce(unconditional), is used. This option estimates standard errors allowing

for the sampling variation of the x’s.
23Please note that the TWM approach is similar to the estimator proposed by Sun and Abraham (2021). Still, compared

to their estimator, it has one main advantage. As in Wooldridge (2021), the T E is explicitly allowed to vary with covariates,
making the parallel trends assumption more credible.

18



ment mechanism is known in the setting under analysis, in regressions (2) and (3), standard errors will
be clustered at the RHS level to correct for the potential serial correlation of the error term.

However, as explained in Section 3, in the setting under analysis – depending on the year consid-
ered – there are 10 treated RHSs at most. As shown by Cameron et al. (2008) and MacKinnon and
Webb (2018), inference based on the classic Cluster-Robust Variance Estimator (CRVE) is highly likely
unreliable when the number of treated clusters is small. To overcome this issue, for each of the two
regressions above, both classic cluster-robust standard errors, as well as standard errors based on the
subcluster wild bootstrap with Rademacher weights (MacKinnon and Webb, 2018), will be computed. In
this latter case, standard errors will be obtained using a version of the CRVE. Then the resampling pro-
cedure will be carried out at the region-year level (each pseudo-residual will contain only one point,
the tth observation of RHS g). The number of replications will be equal to 9, 999, as suggested by
MacKinnon and Webb (2018).

Using the subclusterwild bootstrapmay lead to improved finite-sample inference in a contextwhere
the number of treated clusters is small. Please refer to Appendix B.4 for a review of how this procedure
works.

6.2 Threats to Identification

For the estimator of the ATT obtained via the TWM to be consistent, the three (strong) assumptions
presented in Section 6.1 need to hold. More specifically, besides requiring the treatment to be irre-
versible, the TWM hinges upon a generalization of the PT and NA assumptions – also known as in-
variance assumptions in the literature of causal inference (Appendix B.1) – to build the counterfactual
outcome region g would have experienced at time t had a PdR not been signed by period r. The bench-
mark estimator works poorly if the PT or NA (conditional or unconditional) assumption fails. As a
consequence, the estimator of the treatment effect is inconsistent, and all inference is unreliable.

Despite the great advantage of allowing point identification of the treatment effect, invariance as-
sumptions – such as the PT and NA assumptions – are hard to justify in most empirical settings, as
they require constructing the counterfactual with certainty.

In such a context, while it is true that assuming that the treatment is at an absorbing state is a strong
requirement, as there are three switchers in such a context (Liguria, Piemonte, and Sardegna), the NA
assumption is probably the more problematic to justify. If, on one side, it is easy to rule out the fact that
regions first treated in 2007 could have hardly forecast the introduction of Recovery Plans, as all of the
measures aimed at curbing the excessive spending run by local governments implemented in the years
before PdRs had never become effective, as explained in Section 2, conversely, motivating the absence
of anticipatory effects of later-treated units is harder. For instance, Calabria had already required the
activation of a PdR in 2007, but this latter became effective only in December 2009. This delay was
mainly because significant misalignments were present between the region’s balance sheets and those
sent to the MoH for PdR’s activation. The fact that Calabria had already required the activation of a
plan in 2007 could indicate a potential violation of the NA assumption for Calabria.

To check whether the NA is likely to be violated and, therefore, undermines the credibility of the
results obtained through the TWM, different sensitivity exercises that tackle the issue of anticipatory
behaviors will be run (see Section 7).

The PT assumption, on the other side, is one of the most debated assumptions in applied works. In
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most settings, trends are likely already present before the policy implementation. Several procedures
have been proposed to test whether such an assumption will likely hold empirically. For instance,
Wooldridge proposes, within the POLS framework, a way to empirically test whether PT is likely to
hold (i.e., to test for the presence of pre-trends). The test, which is based on exclusion restrictions,
requires the introduction of intensity dummies in the pre-treatment period (s < 0) in equations (2)
and (3). Failing to reject the null hypothesis of joint insignificance for the coefficients of the intensity
dummies for s < 0 will indicate the absence of pre-trends.

However, tests like the one proposed byWooldridge (2021) are pre-tests on identifying assumptions.
There exists a wide literature showing that these tests feature several limitations. First, even if the PT is
satisfied in the pre-treatment period, this does not guarantee that the post-treatment PT is also satisfied
(Rambachan and Roth, 2023). Second, failing to reject the null hypothesis of the absence of pre-trends
could be due to the low power of the test rather than the absence of such trends. This will invalidate
inference, as anyDiD-type estimator’s consistency is based on valid PT. Lastly, conditioning the analysis
on whether the test fails to reject or not the absence of pre-trends induces a selection bias, called the
pre-test bias (Roth, 2022).

Besides the limitations of these tests, there has yet to be a consensus in the existing literature on
what to do if pre-trends are detected. As such, the analysis should not be conditioned on test results
only but rather motivate the choice with the researcher’s context-specific information on why the PT
may likely hold.

To check whether the PT is likely to be satisfied in this context, I depict in Figure 2, for each de-
pendent variable of interest, the average evolution of each of the three treated cohorts against the
never-treated. What emerges is that the PT is likely to be satisfied for only some of the dependent
variables of interest (e.g., the mortality rate for ischaemic heart disease).

As it is clear from Figure 2, the PT is not likely to hold unconditionally in the context under analysis
(at least for some of the outcomes of interest). One advantage of the TWM approach is that it allows
relaxing the PT and NA assumption introduced above by relying on a set of covariates and allowing
the treatment effect to vary with them. This is exactly what has been done in (3), where a full set of
regressors, denoted by x, have been introduced.

However, since only a few characteristics have been controlled for, these are likely insufficient to
‘credibly’ relax the PT and NA assumptions. If any of these two assumptions is severely violated, then
the estimators of the ATT ’s are inconsistent.

One way to overcome the issue of either PT or NA assumptions being invalid is to rely on milder
non-parametric assumptions, as proposed by Manski and Pepper (2013, 2018). The estimator they pro-
pose is, indeed, robust to the presence of anticipatory behaviors or the existence of pre-trends, as it
will be explained in Subsection 6.3. More specifically, to enhance the inference’s credibility, Manski
and Pepper (2013, 2018) suggest giving up invariance assumptions in favor of assumptions of bounded
variation, which bound the absolute difference between the true benchmark and the one built invoking
an invariance assumption (Appendix B.1) not to exceed a given threshold, sometimes denoted with δ.

One last assumption, done implicitly, is that I am not distinguishing between regions under an
external commissioner and those not. As explained in Section 3, from 2008, some regions were put
under the administration of an external commissioner. However, since the main goal of this paper
is to evaluate the impact of Recovery Plans, regardless of whether region g at time t was under a
commissioner, not differentiating among regions under a commissioner or not should represent per se
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a threat to the identification. Also, this last issue can be easily tackled by resorting to bounds. This
estimator allows the researcher to estimate region-specific treatment effects (TE), thus distinguishing
between regions and those not under a commissioner in a given year.

Lastly, being able to estimate region-specific treatment effects allows me to overcome the issue that
I needed to impose – when estimating (2) and (3) – that the treatment was at an absorbing state also
for those three regions, which effectively left the treatment status over the sample period. Despite
often "the effect of having ever received the treatment is of interest, as it captures the path of treatment
effects even though the treatment itself may be transient" (Sun and Abraham, 2021, p. 177), it may
be too strong assuming that the region behaved as if it were still under treatment. If one thinks this
assumption is too strong, one can completely ignore the estimated bounds for the TE for these three
regions, as explained further below.

6.3 Bounds

To give the intuition behind the non-parametric approach proposed by Manski and Pepper (2018),
I will follow Depalo (2019). Suppose the counterfactual outcome, yg,t(∞), needs to be estimated.
In the program evaluation literature, yg,t(∞) is usually retrieved by invoking an "exact" invariance
assumption (Imbens and Wooldridge, 2009; Depalo, 2019). Following Depalo (2019), these assump-
tions can be divided into four main groups. The time invariance assumption exploits the outcome ob-
served in the pre-treatment period for the treated unit g to estimate the benchmark outcome. That is,
ŷg,t(∞) = yg,pre(∞) where pre ∈ {yfirst, . . . , q} and q = r −1. Another common way to retrieve the
counterfactual outcome, yg,t(∞), is to rely on a state invariance assumption, which uses (often a linear
combination of) the observed outcomes in the never-treated units. If never denotes the set of never-
treated units, then for t ≥ r, one way to retrieve ŷg,t(∞) is either to impose ŷg,t(∞) = ynever,t(∞) or
ŷg,t(∞) = E(ynever,t(∞)). One can also invoke a "suitable" parallel trends assumption to estimate the
benchmark as the ones shown in Section 6.1. The last group includes the time-varying parallel trends

assumption. To retrieve the counterfactual, yg,t(∞), a weighted average of the units in the donor pool
is used, where the weights are chosen appropriately according to the Synthetic Control Method first
proposed by Abadie and Gardeazabal (2003) (i.e., ŷg,t(∞) = wynever,t≥r(∞) where w is the vector of
selected weights). For a short overview of how to derive the counterfactual outcome and, in turn, the
average treatment effect, please refer to Appendix B.1.

If any invariance assumptions hold, the benchmark outcome can be identified, and so the treatment
effect. Conversely, suppose reasons exist for the appropriate exact invariance assumption not to hold. In
these cases, Manski and Pepper (2013, 2018) suggest directly accounting for the uncertainty by requiring
the invariance assumption to hold only approximately. That is, the benchmark against which yg,t(r)
should be compared will be at most equal to the counterfactual estimated by relying on the suitable
invariance assumption plus the degree of uncertainty considered, ŷUp

g,t (∞) = ŷg,t(∞) + δ. On the
other hand, the counterfactual outcome will be at least equal to the estimated counterfactual minus the
level of uncertainty allowed, ŷLow

g,t (∞) = ŷg,t(∞) − δ. By doing so, bounds for yg,t(∞) are identified
(Manski, 1990).24

There could be several reasons for exact invariance assumptions not to hold, such as pre-trends
24Please note that, in principle, there is no reason for δ to be symmetric. However, allowing δUp ̸= δLow "would constrain

the spectrum of possible answers" (Depalo, 2019, p. 6) in terms of economic models one wishes to test. For this reason, in the
following analysis, only symmetric δ’s will be considered.
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between treated and control units before the policy implementation, omitted variables, anticipatory
behaviors by treated units, etc. However, one of the greatest advantages of the estimator proposed by
Manski and Pepper (2018) is that the true reason why the invariance assumption may not hold should
not be known for the estimator of the TE to be consistent. The only requirement is that the amount
of uncertainty should be specified ex-ante. The larger the values of δ, the weaker the reliance on the
invariance assumption, and the more credible the estimator derived (Manski, 2003).

Since the true values of the δ are unobservable, one way to choose its "optimal" value is to set δ

equal to the (absolute) difference observed in the pre-treatment period between the actual outcome and
the benchmark built invoking one of the assumptions. Manski and Pepper (2018), for instance, use the
75th percentile of the absolute difference observed in the pre-treatment period. Similarly to Depalo
(2019), in the following analysis, δ will be set equal to the largest difference observed before a PdR was
introduced. The reason to favor a larger value of δ is that increasing the level of uncertainty strengthens
the credibility of the findings.

Overall, by letting δ vary, a full set of possible counterfactual outcomes is identified. This implies
that the treatment effect for region g that first underwent an RP in period r computed at time t will be
bounded to lie in the interval [τLow

g,r,t , τUp
g,r,t], where:

τLow
g,r,t = E(yg,t(r) − ŷUp

g,t (∞)|dr = 1)

τUp
g,r,t = E(yg,t(r) − ŷLow

g,t (∞)|dr = 1)

where r ∈ {2007, 2010, 2011} and t = r, . . . , 2018. If both τLow
g,r,t and τUp

g,r,t are positive, then
the region-specific treatment effect, TEg,r,t, is positive; if τLow

g,r,t and τUp
g,r,t are both negative, then the

TEg,r,t < 0; if [τLow
g,r,t , τUp

g,r,t] covers 0, it is not possible to say anything about the TEg,r,t.25

Another benefit of exploiting assumptions of bounded variation is that they allow combining more
assumptions to obtain a refinement of the length of [τLow

g,r,t , τUp
g,r,t]. This also avoids favoring one particu-

lar assumption. Following Depalo (2019), time invariance and Synthetic Control (SC) assumptions will
be jointly exploited to estimate the causal effect of Piani di Rientro. In particular, the SC assumption
is preferred over a state-invariance or a DiD assumption for one main reason. It allows constructing
the benchmark employing all the information available (for untreated regions) in the pre-treatment,
rather than relying only upon a simple average of never-treated regions’ outcomes at period t (state
invariance) or the last pre-treatment period (classic (2 × 2) DiD setup). Further, how SC constructs the
counterfactual is similar to how the TWM does. However, differently from Depalo (2019), a longer time
horizon will be considered, thus allowing the estimation of the long-run impacts of PdRs.

If δtime ̸= 0 and δSC ̸= 0 denote the uncertainty parameters of the time invariance and SC assump-
tions, respectively, then the bounds for yg,t(∞) can be obtained as follows:

yLow
g,t (∞) ≡ max(ySC,t(∞) − δSC , yr−1,t(∞) − δtime) ≤ yg,t(∞) ≤

yUp
g,t (∞) ≡ min(ySC,t(∞) + δSC , yr−1,t(∞) + δtime)

25Please note that with assumptions of bounded variation, it is now possible to estimate the treatment effect for each
treated region. This is surely one of the greatest advantages of relying on this approach. Moreover, note that by exploiting
the linearity of E(·) and the fact that we are now considering the treatment effect for each treated region in each instant of
time, τ j

g,r,t = E(yg,t(r) − ŷj
g,t(∞)|dr = 1) ≡ yg,t(r) − E(ŷj

g,t(∞)|dr = 1) with j ∈ {Low, Up}.

23



For yLow
g,t (∞) ≤ yg,t(∞) ≤ yUp

g,t (∞) to hold, a necessary condition would be that δSC + δtime ≥
|ySC,t(∞) − yr−1,t(∞)|. However, such a condition is not imposed in the following analysis, as being
unable to identify the bounds for the treatment effect – since the lower bound could be greater than
the upper bound – might also be relevant to draw policy implications. The intuition is that if the upper
bound is lower than the lower bound, nothing can be inferred about the treatment effect in such a
situation.

Regarding statistical inference, the issue of how to perform inference in this scenario is not specifi-
cally addressed in the current work. This is mainly because the data employed are not a random sample
from the population but the whole population itself. Moreover, Manski and Pepper (2018, p. 234) assert
that "a fundamental reason for not performing statistical inference is that measurement of statistical
precision requires specification of a sampling process that generates the data. Yet we are unsure what
type of sampling process would be reasonable to assume in this application". One way to overcome this
issue would be to view current Italy as the realization of a sampling process. But this would require
defining a super-population and a stochastic process generating the actual history of Italy. However,
no consensus exists in the current literature on bounds on how to proceed in such cases.

For instance, placing restrictions on the possible post-treatment violation of the parallel trends as-
sumption, Rambachan and Roth (2023) propose two approaches that allow obtaining uniformly valid
inference. They assume that the estimator used to construct the counterfactual is asymptotically nor-
mally distributed. However, as explained in Appendix B.4, with few treated clusters, asymptotics have
not kicked in, and no Central Limit Theorem can be applied. This is why, in the following analysis, the
estimator proposed by Manski and Pepper (2013, 2018) is preferred. Another reason to choose bounds
over the approaches proposed by Rambachan and Roth (2023) is that the former offers a valid alternative
to the TWM, as it is robust to violations of both PT and NA assumptions.26

7 Robustness Checks

Regressions (2) and (3) are only two possible version of the TWM approach. Much more heterogeneity
than that introduced in (2) and (3) could be per se allowed by exploiting the estimator proposed by
Wooldridge. For instance, theATT may be allowed to vary not only over time but also across treatment
cohorts (e.g., see regression (B.10)). Besides allowing the ATT to vary over time and across treatment
cohorts, the treatment dummy can be interacted with controls, cohorts, and year dummies altogether
(for example, see Eq. (B.11) in Appendix B). Thus allowing much more flexibility and, consequently,
relaxing the PT and NA assumptions much more than in (3).

However, since in such a context, the number of observations is fixed and small, whereas T is
large, rather than allowing the treatment effects to vary across treated cohorts and over time and then
aggregating them ex-post in some way – as suggested by Callaway and Sant’Anna (2021) – ex-ante
restrictions on the τ ’s have been imposed in (2) and (3). Specifically, the ATT ’s were allowed only to
vary over time and covariates, where covariates were centered about their mean conditionally on being
treated only. This latter choice was because of efficiency reasons, as explained in Subsection 6.1.

26As a robustness check, the approach proposed by Rambachan and Roth (2023) is also used. However, if M = 0 is
imposed – the absence of violations of the PT in the post-treatment period – the confidence intervals computed using this
approach are much larger than those obtained for the same parameter using TWM or the estimator proposed by Sun and
Abraham (2021). This corroborates the idea that normality is not likely to hold in this scenario.
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In the following analysis, another version of the TWMwill also be estimated as a robustness check.
Specifically, theATTswill be allowed to vary by calendar time, but homogeneity across cohorts will be
imposed. If, on the one hand, PdRs are region-specific, there is no reason to expect that regions treated
in different cohorts experience different TEs.27 Conversely, the impact of RPs likely varies over time.28

The calendar-type versions of the TWM that will be estimated are the following:

yg,t = α +
2018∑

s=2007
τs(wg,t · fst) +

∑
r

λrdg,r + ηt + ug,t (4)

yg,t =α +
2018∑

s=2007
τs(wg,t · fst) +

∑
r

λrdg,r +
∑

r

(dg,r · xg)γγγr + xgκκκ

+ (wg,t · ẋg,treat)ρρρtreat + ηt + ug,t

(5)

where the only difference with (2) and (3) lies in the fact that wg,t is now interacted with fst (and
not with intensg,t (s)), and fst represents a dummy variable equal to 1 if s = t and zero otherwise.
Compared to (2) and (3), fst = 1 tells how much being treated in a specific year (e.g., 2008) affects the
dependent variable of interest. Whereas, in (2), the estimated τ tells how much being s periods away
from when the region first signed a PdR impacts y. Please note that this version of the TWM is closer
to bounds, as the ATT will be allowed to vary by calendar time and not by how many periods had
passed from when the region first received the treatment.

As far as standard errors are concerned, as anticipated in Subsection 6.1, all regressions’ coefficients
will be reported with bootstrap confidence intervals – where the bootstrap procedure used is the sub-
cluster wild bootstrap proposed by MacKinnon and Webb (2018). However, standard errors will also be
estimated using the classic CRVE as a robustness check.

The TWM is just one of the different approaches that have been recently proposed to estimate the
ATT consistently in a context with variation in treatment timing (Appendix B.3). To check whether
the results obtained via the TWM approach are robust, the estimator proposed by Sun and Abraham
(2021) will also be used. Specifically, this method allows us to obtain an estimator for τs similar to
the one obtained by estimating Eq. (2) and (3) via POLS. To do so, Sun and Abraham (2021) exploit a
generalization of the PT and NA assumptions similar to the one required for the validity of the TWM.
However, compared to the estimator proposed by Wooldridge (2021), it has one main disadvantage.
The TE is not explicitly allowed to vary with covariates, making the parallel trend and no-anticipation
assumptions less likely to be valid.29

For what concerns bounds, instead, as anticipated in Subsection 6.3, the largest values of δ observed
in the pre-treatment periods will be used. This is because the larger the uncertainty allowed, the more
credible the results (Manski, 2003). However, to understand whether the results are robust, bounds will
be re-estimated by setting δ equal to the 75th percentile of the (absolute) difference observed in the
pre-treatment period between the actual outcome and the benchmark built invoking the SC or time-
invariance assumptions. Not only, as an ulterior sensitivity exercise, a complete set of combinations of

27As an ulterior sensitivity exercise, the AT T was also allowed to vary by cohorts, but no clear pattern was detected
across cohorts. However, this result could be entirely driven by the fact that few treated regions exist in the second and third
cohorts, causing standard errors to be imprecisely estimated.

28As pointed out in Section 3, for example, the first version of RPs mainly focused on cost-containment. Whereas, from
the second round of PdRs, the law gave ELAs and financial stability equal importance.

29For further details on how this estimator works, please refer to Sun and Abraham (2021).
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δSC and δtime will also be employed. In this latter case, whether the time invariance and SC assumptions
jointly hold in the data can be directly tested. To give the intuition, suppose that δSC and δtime are set
jointly equal to 0. If the upper bound is always smaller than the lower bound – meaning that the TE is
not identified – this implies that we can reject the hypothesis the time invariance and SC assumptions
jointly hold in the data.

As pointed out in Subsection 6.2, while it is reasonable that regions that first received the treatment
in 2007 could not forecast the introduction of Piani di Rientro, it is hard to believe that later treated
regions did not anticipate their entrance in a PdR. Despite bounds allowing to retrieve a consistent
estimator of the TE without knowing the exact reason for which the invariance assumption (needed
for identification) does not hold, different sensitivity exercises will be run to understand whether it is
plausible that the (C)NA assumption holds.

First, following Wooldridge (2021), leads of the treatment dummy will be introduced in Eq. (4) and
(5). Failing to reject the null hypothesis of joint insignificance of the coefficients for the treatment
dummy leads will indicate that the (C)NA assumption is likely to hold. However, as for the PT assump-
tion, conditioning the analysis on passing a test would generate a pre-test bias (Roth et al., 2023). For
this reason, in the spirit of the estimator proposed by Callaway and Sant’Anna (2021), Eq. (4) and (5)
will be re-estimated by anticipating for each region the entrance in PdR by two years (e.g., Abruzzo
will first join a PdR in 2005). The choice to anticipate the treatment by two years is because a first
draft of Recovery Plans was outlined with the budget law for 2005, but this measure has never become
effective.

Lastly, following Leive et al. (2023) and McKibbin (2023), who exclude from their analysis later-
treated units for which they expect the NA to be potentially violated, all the analyses described in
Subsection 6.1 will be re-run by excluding later-treated regions (that is, Calabria, Piemonte, and Puglia).
Specifically, the following two regressions will be estimated via POLS:

yg,t = α +
11∑

s=0
τs(wg,t · intensg,t(s)) + λdg,2007 + ηt + ug,t (6)

yg,t =α + λdg,2007 +
11∑

s=0
τs(wg,t · intensg,t(s)) + xgκκκ + (dg,2007 · xg)γγγ+

(wg,t · ẋg,treat)ρρρtreat + ηt + ug,t

(7)

Furthermore, calendar-type versions of the TWM, like the ones reported in (4) and (5), will also be
estimated. To save space, these latter results are available upon request.

8 Results

As explained in Section 3, Piani di Rientro aimed at restoring the financial stability of RHSs while
guaranteeing (or even improving) ELAs. These two targets, however, are incoherent unless efficiency
gains are feasible. While there is wide consensus in the existing literature that RPs managed to reduce
budget imbalances (e.g., Arcà et al. (2020); Bordignon et al. (2020)), on the other side, there is contrasting
evidence regarding the impact on efficiency and the quality of services provided (Aimone Gigio et al.,
2018; Depalo, 2019; Bordignon et al., 2020; Guccio et al., 2023; Beraldo et al., 2023; Cirulli and Marini,
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2023). In particular, there is also a disagreement between the Central Government and treated regions
regarding the impact of such a policy on health outcomes (SiVeAS, 2014; Calabrò, 2016; Aimone Gigio
et al., 2018).

This section will provide novel evidence regarding the causal impact of Piani di Rientro on costs,
inefficiency, and quality indicators. Specifically, compared to existing studies, this paper will consider
explicitly the staggered nature of the policy and the possibility of having heterogeneous treatment ef-
fects across regions and over time. To corroborate the choice to rely on methods that explicitly model
that the policy exhibits variation in treatment timing, I will also exploit the DiD decomposition pro-
posed by Goodman-Bacon (2021).

Before showing the results obtained through theDiDDecomposition, I will present some descriptive
statistics on the covariates used in the following analysis.

Next, the results obtained through the estimator proposed by Wooldridge (2021) will be presented.
As pointed out in Subsection 6.1, this method will allow us to retrieve a consistent estimator of the
ATT in a context with variation in treatment timing by introducing treatment effect heterogeneity.
Moreover, this estimator will also estimate the policy’s long-run impact.

Lastly, I will show how the results obtained through the TWM approach are robust to the relaxation
of the main identifying assumptions. To do so, building on Depalo (2019), the non-parametric estimator
proposed byManski and Pepper (2018) will be used. Specifically, compared to Depalo (2019), the impact
of Recovery Plans will be evaluated not only on regions that first signed a PdR in 2007 but also on later
treated regions (Calabria, Piemonte, and Puglia). In addition, results for each post-treatment year will
be provided rather than showing the effect only at the end of the first and second rounds. Thus, we can
estimate the long-term consequences of Piani di Rientro.

8.1 Descriptive Statistics – Covariates

Table 2 reports descriptive statistics for all the covariates described above split by treatment cohort
and by before and after 2007, the first year in which an RP was signed. The choice to split the sample
only into a pre and after-2007 analysis was for the sake of brevity.30 On average, regions that adopted
PdRs in different cohorts share similar characteristics (in terms of population distribution), which have
remained stable over time. Conversely, huge differences arise between treated cohorts and never treated
regions, especially regarding GDP per capita.31

8.2 Results – DiD Decomposition

Most existing studies on RPs exploit some variation of the classic TWFE estimator to evaluate the
impact of the policy on different health indicators. However, recent studies in the DiD literature show
that failing to take into account the staggered nature of the policy might invalidate inference (see
Appendix B.2 for a review). To show why it is important to consider this aspect of Piani di Rientro, the
DiD decomposition will be employed in this subsection. Only the results for the mortality rate from
ischaemic heart diseases will be shown to save space. The intuition behind the results obtained for this
indicator is similar to that for the other variables considered (available upon request).

30Further descriptive statistics are available upon request.
31Please note that the TWM allows centering x about the mean of the x over the treated cohorts. However, since no

huge differences were detected in observable characteristics among treated cohorts, the x’s were centered about their mean
conditionally on being treated for efficiency reasons.
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Table 2: Descriptive statistics

Pre 2007 Post 2007

Never treated d2007 d2010 d2011 Never treated d2007 d2010 d2011
Population size 2401136.359 2956629.413 3128209.667 4037581.556 2572743.803 3048436.131 3172304.167 4094854.083

(2614284.400) (2091093.773) (1151858.005) (11962.393) (2828880.410) (2193615.634) (1241479.770) (84077.806)
% people aged 15-34 25.314 26.730 26.498 29.141 20.956 22.402 22.353 24.145

(2.010) (2.925) (2.862) (1.490) (1.710) (2.626) (2.939) (1.464)
% people aged 35-54 28.889 28.129 28.110 27.273 30.530 29.987 29.516 29.319

(1.148) (1.238) (1.273) (0.713) (0.855) (1.085) (0.894) (0.424)
% people aged 55-64 12.317 11.568 11.800 10.906 12.653 12.839 12.866 12.468

(0.913) (1.250) (1.568) (0.476) (0.709) (0.813) (0.681) (0.452)
% people aged ≥ 65 20.033 19.035 19.289 16.121 22.139 21.452 21.827 19.683

(2.315) (3.606) (2.324) (0.935) (2.038) (3.251) (2.393) (1.468)
% female 51.383 51.643 51.386 51.444 51.376 51.570 51.415 51.479

(0.392) (0.567) (0.315) (0.037) (0.378) (0.502) (0.239) (0.047)
GDP per capita 26615.164 19986.604 19720.645 15052.733 31334.810 23425.171 22926.078 17315.515

(5194.182) (5455.010) (6166.943) (1358.625) (6072.568) (5801.506) (6365.046) (739.143)

Notes: Means are reported with s.d. in parentheses. Never-treated = Regions that have never undergone an RP. d2007
= Regions that first signed an RP in 2007 (Lazio, Abruzzo, Campania, Liguria, Molise, Sardegna, and Sicilia). d2010 = Re-
gions that first signed an RP in 2010 (Calabria and Piemonte). d2011 = Regions that first signed an RP in 2011 (Puglia).

Figure 3: DiD Decomposition – Mortality rate from ischaemic heart diseases

(a) Without controls (b) With controls

(c) Restricted sample + controls
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In Panel (a) of Figure 3 is plotted each pair of (2×2) DiD estimators against their weights, obtained
by applying the DiD decomposition to the estimated coefficient for β in (1), using as dependent variable
the mortality rate from ischaemic heart diseases.32 In particular, the crosses represent terms in which
never-treated regions act as controls and regions treated at some point act as treated. The open circles
are terms in which later treated units act as controls for early treated regions (for instance, Calabria,
Piemonte, and Puglia act as a control for Abruzzo in 2007). The closed triangles represent terms in
which early treated (e.g., those treated in 2007) units act as controls for later treated regions (those
joining an RP in 2010 or 2011), known in the literature as forbidden comparison groups. The dashed
line is the overall TWFE estimate for β, approximately equal to 1.70 p.p. Plotting each pair of (2 × 2)
DiD estimators against their weights allows the researcher to gauge the extent of the bias by visually
inspecting which of the three types of groups (Early vs. Late, Late vs. Early, Never vs. Timing) receive
more weights. Summing each comparison group’s weights tells how much of the identifying varia-
tion comes from a specific group, thus helping to understand how well the TWFE estimator performs
compared to other estimators.

Overall, what emerges is that most of the identifying variation – equal to 86% of the overall varia-
tion – comesNever vs. Timing terms, for an average effect of 1.99p.p.. Despite only 4% of the identifying
variation coming from terms in which early treated regions act as control groups for later treated units,
the estimated impact for these terms is of the opposite sign compared to the DiD terms obtained using
as controls never-treated regions. This means that the estimated coefficient for β in (1) is (slightly)
biased downward.

Panel (b), instead, reports the DiD decomposition applied to a variation of (1) in which population
size, its related distribution by age and gender, and GDP per capita are also controlled for. In this
graph, the open circles represent timing regions (i.e., Early vs. Late and Late vs. Early), the closed
triangles are the terms in which never-treated regions act as the control group for treated ones, and
the crosses represent the within variation. This new source of variation comes from the fact that time-
varying controls have now been included in (1). In particular, this latter term takes into account the
fact that units belonging to the same timing group may feature different values of the covariates. Also,
in this case, almost 63% of the overall identifying variation comes from Never vs. Timing terms, with
an average effect of 1.83p.p.. 16% of the variation now comes from the covariates, with an (overall)
average effect of −3.48. The remaining 20% of the identifying variation comes from timing terms, for
an average effect of −.20. Also, in this case, the bias drives down the estimated coefficient.

Lastly, since the DiD decomposition assumes that treated units are at an absorbing state, Panel (c)
reports the same results shown in Panel (b), but where units that left the treatment status – Liguria,
Piemonte, and Sardegna – have been dropped. Despite the overall coefficient being much smaller than
that reported in Panel (b), it is still evident that the estimated coefficient is biased downward by timing
groups.

These graphs show that the estimated coefficient obtained through the classic TWFE estimator is
biased in such a context. Therefore, as already pointed out, ignoring the staggered nature of the policy
would jeopardize inference. To prevent this problem, in the next subsection, results obtained by an
approach that allows the researcher to retrieve a consistent estimator of the ATT in a context with
variation in treatment timing are shown.

32These graphs were obtained using the STATA package bacondecomp provided by Goodman-Bacon.
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8.3 Results – TWM

This subsection will present results obtained using the Two-Way Mundlak approach. As mentioned
in Section 6, this method allows us to consistently estimate the ATT in a context with variation in
treatment timing.

Figure 4: TWM results – ln(Current health exp)

(a) Without controls (b) With controls

Notes: The above regressions include 357 RHS-year observations. Results depicted in Panel (a) were obtained by estimating
(2) using as the dependent variable the log of current health expenditure. In Panel (b) are reported the results obtained by
estimating (3). Coefficients are reportedwith 95% confidence intervals obtained via the subcluster wild bootstrap (MacKinnon
and Webb, 2018) with Rademacher weights and 9, 999 replications. Specifically, the t-statistic is obtained through a CRVE
estimator (where the level of clustering is at the RHS level), whereas the resampling is carried out at the RHS-year level.

In Panels (a) and (b) of Figure 4, the estimated coefficients for intens(s) obtained by estimating
Eq. (2) and (3), respectively, using as the dependent variable the log of current health expenditure, are
depicted. On the x-axis, points estimates are reported, while on the y-axis, how many periods at time
t had passed from when region g first received the treatment.33 Coefficients are reported with 95%
confidence intervals, obtained via the subcluster wild bootstrap with Rademacher weights (MacKinnon
and Webb, 2018). This bootstrap procedure requires that the t-statistic be obtained through a CRVE
estimator (Appendix B.4). In contrast, the resampling is carried out at a finer level than the level at
which the disturbances are clustered. Specifically, in this context, standard errors and, consequently,
the t-statistic are clustered at the RHS level, and the resampling is carried out at the RHS-year level.34

On average, with the introduction of RPs, the Central Government managed to reduce current
health expenditure in treated regions (as expected). Except for the coefficient for intens(0), the effect
is always negative and statistically significant at 5%, and this result holds for both two Panels. One
reason for failing to reject the null hypothesis that the coefficient for intens(0) is equal to 0 could be
because it may take time for regions to adjust to the PdR-specific requirements and, thus, be able to
reduce current health expenditure.

33For instance, intens(0) means that 0 periods had passed fromwhen the region first received the treatment (for Abruzzo,
which was first treated in 2007, intens(0) will be equal to 1 in 2007 while, for Calabria, it will be equal to 1 in 2010). Whereas
intens(5) means that 5 years had passed from when the region first received the treatment (thus, for Abruzzo, it will take
value 1 in 2012).

34Similar results were obtained using standard errors obtained via a classic CRVE estimator. These results are shown in
Figure C.2 in Appendix C .
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If, on one side, the fact that results are stable across the two specifications is reassuring. On the
other side, what also emerges by comparing Panel (a) with Panel (b) is that conditioning or not on
covariates only marginally affects the results (the estimated coefficients are similar in magnitude). This
latter finding could be because the PT and NA assumptions are not completely relaxed by controlling
only for very few covariates.

Before showing the results for the other indicators, it is worth dedicating a few words about the
bootstrap confidence intervals. Three assumptions need to be satisfied for the subcluster wild bootstrap
to perform well (Appendix B.4). The first assumption – equal cluster sizes and fixed sample size – is
naturally met in this context, as the panel is strongly balanced and the sample size is fixed. The third
assumption – the covariance matrices of each cluster must be proportional – is also likely to be satis-
fied in this context, as any cross-cluster heteroskedasticity is allowed by this assumption. The second
assumption – the average within-cluster correlation needs to be small – on the other side, is more diffi-
cult to check in practice. MacKinnon and Webb (2018) show that, however, one way to check whether
this assumption holds is to inspect whether the p-values of the restricted and unrestricted bootstrap
are similar, and in particular, whether the p-value for the restricted subcluster wild bootstrap is always
larger than the one of the unrestricted. To check whether this condition holds in this context, in Fig-
ure 5, the bootstrap distribution of the t-statistic for each value of intens(s) is reported by imposing
and not imposing the null hypothesis. To save space, only the results for the coefficients for intens(s)
obtained by estimating (3) – using as dependent variable the log of current health expenditure – are
shown.35 What emerges is that the bootstrap p-values of the restricted and unrestricted subcluster wild
bootstrap are very close, suggesting that assumption 2 should not be seriously violated.

Results for the other indicators discussed in Section 5 are reported in Figure 6. To save space, results
obtained only by conditioning on covariates are reported (i.e., by estimating (3)), as the intuition is
similar to that for the log of current health expenditure – conditioning on covariates only marginally
affects the ATTs. As in Figure 4, also in this latter case, coefficients are reported with 95% confidence
intervals obtained via the subcluster wild bootstrap, which proved to work well for all these indicators
(assumption 2 should not be seriously violated in any of these cases). The bootstrap distributions of
the t-statistic for each value of intens(s) for each indicator are available upon request.

For what concerns the two targets of the PdRs, we can see that, as expected, the introduction of
Recovery Plans reduced the hospitalization rate both for total and also for acute hospitalizations (Panel
(a) and (b), respectively) and the number of hospital beds (Panel (c)) in treated regions. For each depen-
dent variable, coefficients are always statistically different from 0 except for the first two years (and for
intens(11) in the case of hospital beds). The absence of an effect in the years immediately after the im-
plementation of the plans is coherent with the fact that the policy requires a structural reorganization
of the RHS. Therefore, it may take time for the region to meet the requirements adequately.

As far as inefficiency is concerned (Panel (d) in Figure 6), it seems that after the introduction of PdRs,
treated regions experienced a small but statistically significant reduction in the level of inefficiencies
as proxied by the ratio between the hospitalization for DRG at high risk of inappropriateness versus
those that could not be avoided. The lower the ratio, the lower the level of inefficiency in the RHS.
Also, in this case, coefficients for intens(s) are almost everywhere statistically significant at the 5%.
On the other side, the coefficients for intens(s) are always indistinguishable from 0 if the c-section

35Similar results were obtained for the coefficients of (2), which are available upon request.
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Figure 5: Bootstrap distribution t-statistics – ln(Current health exp)

Notes: The above histograms report the bootstrap distribution of the t-statistic for each of the coefficients for intens(s)
obtained by estimating (3) using as dependent variable the log of current health expenditure. In particular, these bootstrap
distributions were obtained by exploiting the subcluster wild bootstrap with Rademacher weights with 9, 999 replications.
Moreover, for each coefficient, the bootstrap distribution obtained by imposing (restricted) and not imposing the null hypoth-
esis (unrestricted) were reported one next to the other.

rate (Panel (e)) is considered. However, the lack of an effect for this latter indicator could be because
the estimator for the ATT is inconsistent. Indeed, what emerges from Figure 2 is that the parallel
trends assumption is unlikely to be valid for this indicator. On the contrary, it is likely to be satisfied
concerning the inefficiency ratio. If this is true, then PdRs may have effectively reduced inefficiencies.

If, on the one side, PdRs managed to reduce costs, on the other side, they seem to have caused a
deterioration in the quality of services provided. Indeed, except for the % patients with hip fracture
replacement (Panel (h)), a deterioration in the other quality indicators is detected. Before commenting
on the results for the other quality indicators, it is worth understanding why no effect is detected for the
% patients with hip fracture replacement. There could be two potential explanations. First, from the
contextual perspective, this indicator is part of the specific targets of PdRs. Thus, regions and hospitals
have an economic incentive to ensure that patients hospitalized with a hip fracture undergo surgery
within 48 hours from when they arrive in the emergency room. Second, from the econometric side, as
it is evident from Figure 2, the parallel trends assumption is likely to be violated for this indicator. In
addition, the CPT is also likely not to hold since only a few control variables were included. Therefore,
it could be that the absence of an effect is due to the estimator of the ATT being inconsistent.

For what concerns the other proxies of quality, what emerges is that the introduction of PdRs has led
to an increase in the mortality rate (all causes) – as can be seen in Panel (f) – and the mortality rate from
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ischaemic heart diseases (Panel (g)). In particular, for the latter, the coefficients for intens(s) obtained
by estimating (3) are statistically different from 0 almost everywhere, with point estimates ranging from
barely 1 to almost 3 p.p. The increase in mortality rate (all causes) documented in treated regions after
the introduction of PdRs is in line with existing studies documenting that healthcare spending cuts are
associated with increased mortality (e.g., Golinelli et al. (2017)). On the other hand, the increase in AMI
mortality rate is likely to have been caused either by the reduced budget available to hospitals (Kwok
et al., 2018; Lobo et al., 2020) or by a decrease in hospital supply Brown et al. (2014).

Regarding the impact of the policy on the % of patients migrating for ordinary acute hospitaliza-
tions (Panel (i)), a statistically significant increase is documented for regions being 4 periods away or
more from when they had first signed an RP. The increase documented for this indicator in treated re-
gions aligns perfectly with the results obtained by Beraldo et al. (2023) as well as with existing studies
reporting that patients’ mobility flow rises following healthcare spending cuts (Arcà et al., 2020) and re-
duced hospital supply (Balia et al., 2018). The coefficients for intens(0) to intens(3) being statistically
indistinguishable from 0 could be because, as explained above, it may take time for the region to adjust
to the PdR’s specific targets. In addition, people may take additional time to perceive a variation in
service quality. While the rise documented in the mortality rates (all causes and from ischaemic heart
diseases) may be a direct negative consequence of the policy, the increase in the mobility flow could be
explained by the perceived decreased quality of services provided in the patient’s region of origin.

8.4 Results – Bounds

As explained in Section 6, the TWM approach requires three strong assumptions to be valid for the
estimator for the ATT to be consistent. Besides the fact that the treatment needs to be irreversible (i.e.,
no leavers), the TWM hinges upon a generalization of the PT and NA assumptions to the multiperiod
setup with variation in treatment timing for identification. In this context, however, these assumptions
are likely violated. First, as explained in Section 3, three regions left the treatment status over the ob-
served period. Second, as illustrated in Figure 2, the PT assumption is unlikely to hold for (at least)
some indicators. Third, as pointed out in Subsection 8.3, point estimates are only marginally affected
when conditioning on covariates. This may indicate that introducing these covariates is insufficient to
"credibly" relax the parallel trends. Lastly, while it is reasonable to assume that regions that first signed
an RP in 2007 could not forecast the introduction of such a policy, it is hard to rule out anticipation be-
haviors for regions that entered the treatment status in subsequent years. If any of the three identifying
assumptions is seriously violated, then the estimator for the ATT can be proved to be inconsistent.

One way to overcome the abovementioned issues is to give up "exact" invariance assumptions in
favor of milder ones. Specifically, building on Depalo (2019), results obtained by the estimator proposed
by Manski and Pepper (2018) will be presented hereafter. There are three main advantages of using
bounds. First, the uncertainty about the validity of the exact invariance assumption can be directly
taken into account, and, at the same time, the reason for this latter not holding should not be known
to the researcher. The higher the level of uncertainty permitted, the more credible the results will be.
Second, exploiting this non-parametric estimator allows estimating region-specific treatment effects,
τg,r,t. This can help to shed light on the results found using the TWM approach. Third, bounds allow
combining more invariance assumptions. This translates into a refinement of the interval length in
which τg,r,t should lie and prevents the researcher from favoring any particular assumption over the
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other.
FollowingDepalo (2019), time invariance and synthetic control assumptionswill be exploited jointly

in the subsequent analysis. The covariates used to construct the benchmark employing the SCM are
always those described in Section 5. However, given the excess variability that characterizes each of
the indicators employed in the analysis, a time-demeaning is applied before employing any invariance
assumptions to compute bounds on τg,r,t. In particular, the mean computed before the first PdR was
signed (i.e., 2007) is subtracted from each dependent variable. The choice to rely on the mean com-
puted before 2007 rules out any anticipatory effects of later-treated regions. Therefore, bounds will be
computed using – rather than yg,t – yg,t − ȳg where ȳg = 1

T

∑2006
t=yfirst yg,t and T = (2006−yfirst +1).

Table C1 of Appendix C reports, for each (treated) region, the difference between the observed
outcome and estimated counterfactual built invoking either SC or time invariance assumptions is re-
ported until the last year before the introduction of the RP. The optimal value of δ is set equal to the
largest (absolute) difference observed in the pre-treatment period between the actual outcome and the
benchmark obtained by relying on one of the two invariance assumptions (Manski and Pepper, 2018;
Depalo, 2019). The reason to favor a larger value of δ is that the more uncertainty is permitted, the
more credible the results. If, for a given indicator, the largest (absolute) difference amounts to .1 or less,
the specific δ is increased by .1 for all regions.

In Table 3 the bounds on the τg,r,t based on the optimal values of δ (i.e., δT,Max , δSC,Max) for
costs indicators are shown. Those for the TE for efficiency indicators are reported, instead, in Table 4,
and for quality’s proxies in Table 5. Specifically, results for each treated region are reported in the
columns, while results for each post-treatment period are shown in the rows. Before proceeding with
commenting on the findings for these indicators, it is worth highlighting that missing values observed
for Calabria and Piemonte for the years 2007-2010 and for Puglia for the years 2007-2011 – for each
indicator – are because these regions entered the treatment status in 2010 and 2011, respectively. If any
other missing value is observed, this is because the upper bound is lower than the lower bound. For
instance, considering the results obtained for hospital beds, we can see four missing values for Liguria.
One in 2014, and the other three missing values for the years 2016-2018. These missing values are
caused by the fact that in these four years for Liguria, the estimated upper bound for τg,r,t is lower than
the lower bound.

For what concerns results obtained using the log of current health expenditure as the dependent
variable, surprisingly, there seems to be no effect. Except for Liguria (years 2016–2018) and Sicilia
(in 2011), for which both the upper and the lower bounds are below zero – meaning that the TE is
negative –, bounds for all the other regions cover 0. In these cases, it is impossible to say anything
about the TE. On the other side, there seems to be a positive effect for Sardegna (years: 2012, 2014–
2018). This is counterintuitive, as a decrease in health expenditure should be observed after introducing
a PdR. However, Sardegna is assumed to be at an absorbing state, but it left the treatment status in 2010,
invoking its special statute. Similar reasoning applies for Liguria and Piemonte – that left the treatment
status, having reached the plan’s goals. As stated before, one of the advantages of the bounds is that it
allows estimating a treatment effect separately for each treated region. Therefore one can ignore the
columns for Liguria, Piemonte, and Sardegna if one thinks that assuming that these regions are at an
absorbing state is too demanding.

Overall, the absence of an effect on the log of current health expenditure could be explained by two
reasons. First, as it is evident in Figure 2, with the introduction of RPs, healthcare spending did not
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decrease for treated cohorts but only flattened. Furthermore, the trend experienced by treated regions
parallels that of never-treated RHS. Second, in Figure C.1 are reported the estimated coefficients of τs

obtained by estimating Eq. (5) using as dependent variable the log of current health expenditure (this
version of the TWM is the one closer to bounds). Even though a negative and statistically significant
effect is detected, point estimates are very small in magnitude. Therefore, it could be that the absence
of an effect is because the ATT , which was already small, was split further into ten different region-
specific treatment effects.

As far as the impact of Recovery Plans on hospital beds is concerned, what emerges from Table 3
is that a negative effect is documented for almost all of the treated regions. This result is expected, as
this was one of the targets of the Recovery Plans. In particular, the bounds for the TE are both negative
for Abruzzo (only the last two years), Calabria, Lazio (only from 2009), Molise (from 2008), Sardegna
(from 2010), Sicilia (from 2007), Piemonte and Puglia (only in 2017 and 2018). By contrast, the effect of
Liguria is sometimes estimated to be positive. Again, this puzzling result is probably because Liguria
exited the RP.

For what concerns hospitalization rate, as expected, the bounds for the treatment effects are almost
in each year and for each region negative – implying that the treatment effect is negative. The bounds
cover 0 in almost all the post-treatment years for Liguria and Piemonte, and this finding could be
because these regions left the treatment status over time. By contrast, the upper bound for Lazio is
almost everywhere lower than the lower bound. Similar results were found for the hospitalization rate
built by considering acute hospitalizations only, which are shown in Table C2.

In Table 4, bounds for the ratio between the hospitalization for DRG at high risk of inappropriate-
ness versus those that could not be avoided are shown. Except for Abruzzo (from 2010) and Calabria
(from 2014), there appear to be no gains in terms of efficiency in treated regions after the introduc-
tion of the policy. By contrast, in Campania and Sardegna (2009–2011) and Molise (2009–2010), the
inefficiency levels seem to have deteriorated.

The fact that the estimated impact reported in Table 4 is different from the one obtained using the
TWM approach (depicted in Figure 6) could be because at least one of the main identifying assumptions
required for the TWM to yield a consistent estimator of the ATT being seriously violated. On the other
side, it could also be the case that the results shown in Figure 6 – which were very small – were entirely
driven by efficiency gains in Calabria and Abruzzo. If, instead, one considers the estimated coefficients
obtained by estimating (5), the null hypothesis of the insignificance of the coefficient is never rejected
(results available upon request).

On the other hand, PdRs seem to have had a positive effect on the c-section rate. What emerges from
Table 4 is that, except in some cases where the estimated upper bound is lower than the lower bound,
the TE is almost everywhere positive. If, on one side, this latter result may indicate that after the
introduction of RPs, the appropriateness of care provided deteriorated. On the other hand, as pointed
out in Section 5, since c-sections are larger in private hospitals (De Luca et al., 2021), this finding may
be indicative of a declined perceived quality of healthcare services provided by public hospitals, rather
than public hospitals effectively providing less appropriate care. Again, the fact that the estimated TE

is different from the one obtained using the TWM approach could be because at least one of the main
identifying assumptions required for the TWM to yield a consistent estimator of the ATT is seriously
violated.

For what concerns quality indicators, in Table 5 results for the mortality rate from ischaemic heart
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diseases and the % of patients migrating to other regions for ordinary acute hospitalizations are re-
ported. As far as the former indicator is concerned, an increase in the mortality rate from ischaemic
heart diseases is observed in Abruzzo (from 2009 to 2017), Campania (only for four years), Liguria (from
2011 to 2016), Molise (almost in each year). For these regions, the lower and the upper bound are al-
most in every case above 0. By contrast, no clear patterns are detected for other treated regions. Similar
results were obtained using the mortality rate (all causes). However, when considering this latter in-
dicator, the fraction of cells in which the upper bound is lower than the lower bound is larger than
the case in which the mortality rate from ischaemic heart diseases is considered. Results for this latter
indicator are reported in Table C2.

The absence of an effect of RPs on the mortality rate from ischaemic heart diseases for Calabria
could be due to an identification problem rather than the absence of an effect. Indeed, Calabria has
always had the lowest mortality rate from ischaemic heart diseases. To try to understand this puzzling
result, Figure 7 depicts the time-series for the mortality rate from ischaemic heart diseases for Calabria
against that for Abruzzo and the average for the never-treated regions. What is clear from this picture
is that the small increase detected in Calabria after the introduction of the RP might have been offset by
the large decrease experienced by never-treated regions. On the other side, this indicator was increasing
for Abruzzo. After 2007 (when the region first signed an RP), it continued rising, with the gap between
its time-series evolution and that of never-tread growing over time.

Figure 7: Time series evolution – Mortality rate from ischaemic heart diseases

Notes: The blue dotted line represents the year Abruzzo signed a PdR. Whereas the orange line represents the first year in
which Calabria was treated.

For what concerns the impact of the policy on the % of patients seeking care outside the region
of origin, what emerges from Table 4, is that after the introduction of the policy, a positive effect on
mobility is detected for all treated regions – except for Piemonte. However, this result should be taken
cautiously, as by looking only at the % of patients, the spatial dimension of the process is completely
ignored. Moreover, the % is computed over all regions. However, it is well known in Italy that the flow
is not bidirectional (Balia et al., 2018; Arcà et al., 2020). Most of the flow comes from the Southern –
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and, at the same time, poorest – regions of Italy seeking care in the Center and North of Italy hospitals.
As pointed out by Arcà et al. (2020), the fact that an impact is detected could indicate that the

introduction of the policy has hampered the gap in the equality of access between the poor and the
rich, besides amplifying the existing gap between the South and the Center-North of Italy in terms of
quality of services provided.

Lastly, in Table C2, results for the % of patients with hip fracture replacements are shown. What
emerges is that the upper bound is lower than the lower bound in almost every post-treatment year
and for each region. Thus, the TE is not identified. There could be two potential explanations for
failing to find an effect for this latter indicator. First, this indicator is part of the ex-post monitoring.
Therefore both hospitals and regions have economic incentives to monitor this indicator and ensure
that adequate levels of this target variable are reached. Second, the lack of an effect could also be due
to an identification problem since, in most cases, the upper bound is lower than the lower bound.

8.5 Robustness checks

In this subsection, the results obtained by carrying out the different sensitivity exercises discussed in
Section 7 will be presented.

As discussed in Section 7, Eq. (2) and (3) are only two possible version of the TWM approach. In
theory, more heterogeneity could be allowed (e.g., by letting the ATT vary by treatment cohort and
over time). However, for efficiency reasons, ex-ante restrictions have been imposed to estimate Eq. (2)
and (3).

Another version of the TWM is the one presented in Eq. (4) and (5), where the ATT have been
allowed to vary by calendar time. Figure C.1 of Appendix C plots τ̂s obtained by estimating (5) via
POLS using as dependent variables the log of current health expenditure (Panel (a)) and the mortality
rate from ischaemic heart diseases (Panel (b)). Coefficients are reported with 95% bootstrap confidence
intervals obtained via subcluster wild bootstrap. While along the x-axis, point estimates are shown as
before. On the y-axis, the estimated coefficients for wg,tfst are reported. For instance, 2007 will be
a dummy equal to 1 if the region is treated in 2007 (this will be equal to 1 for Abruzzo, but not for
Piemonte, which was treated for the first time in 2010).

Results shown in Figure C.1, are in line with those presented in Figures 4 and 6. The estimated
effect on themortality rate is always positive and statistically significant, whereas the impact on current
health expenditure is still negative. The only difference with results reported in Figures 4 and 6 lies in
the first three estimated coefficients (those for 2007, 2008, and 2009), which are now not statistically
different from 0. However, the absence of a statistically significant effect for these coefficients could
be because, in these three years, only seven regions were treated. In contrast, in 2010, Calabria and
Piemonte joined a PdR, and from 2011, also Puglia. Indeed, in the case in which the ATT is let vary
by calendar time, as in Eq. (5), the interpretation of the coefficients is no longer in terms of how many
periods had passed from the first year in which the region was first treated. Rather, the τ̂s’s tell the
effect for regions effectively treated in year t = s. To give the intuition, τ̂2015 will tell how much being
treated in 2015 affects the dependent variable under scrutiny. Results obtained by estimating (5) using
as dependent variable the other indicators are available upon request.

Next, as an ulterior sensitivity exercise, standard errors of Eq. (2) to (5) were re-estimated using a
classic cluster-robust variance-covariance estimator. Figure C.2 mirrors Figure 4, where now standard
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errors have been obtained via a standard CRVE. What emerges is that results depicted in Figure C.2
are perfectly in line with those plotted in Figure 4. The estimated τs’s are always statistically different
from 0 at 5%, except for the coefficient of intens(0), as in Figure 4. However, confidence bands are
now slightly wider than before. This finding perfectly aligns with Monte Carlo simulations results in
MacKinnon and Webb (2018), suggesting that the classic CRVE will likely perform poorly in such a
context.

Then, to understand whether the results obtained via the TWM approach are robust, the estima-
tor proposed by Sun and Abraham (2021) was also used. Similar results to those depicted in Figures
4 and 6 were obtained by exploiting this latter estimator. To save space, only results for the log of
current health expenditure are shown in Figure C.3, whereas those obtained using the other indicators
as regressand are available upon request. What emerges from Figure C.3 is that the point estimates are
similar to those obtained by estimating (3) via POLS. However, three things are worth stressing. First,
the estimator proposed by Sun and Abraham (2021) does not allow for the relaxation of the PT and NA
assumptions, whereas in (3) both these two assumptions were relaxed by controlling for covariates.
Second, inspecting the estimated coefficients for the intensity indicators in the pre-treatment periods
reveals that some are statistically different from zero. This will test whether the PT assumption will
likely hold in practice. In particular, for the PT to be likely to hold, one should fail to reject the null
hypothesis of joint insignificance of all the coefficients for the intensity indicators in the pre-treatment
period (i.e., s < 0). If one rejects the null hypothesis of joint insignificance, then pre-trends may be
present. However, as pointed out by Roth (2022), these tests may suffer from several issues and should
be used cautiously.36 Third, the estimated coefficients reported in Figure C.3 are reported with 95%
confidence intervals, where standard errors were estimated using a standard CRVE (the level at which
s.e. were clustered is at the RHS level). The STATA package eventstudyinteract provided by
Sun and Abraham (2021), indeed, does not allow to resort to any bootstrap procedure to overcome the
issue of having few treated clusters (see, Appendix B.4 for further details). Overall, inference obtained
via this estimator may be highly unreliable.

As far as bounds are concerned, δSC and δtime were set equal to the largest absolute difference ob-
served in the pre-treatment period between the actual outcome and the one built invoking the respec-
tive invariance assumption to increase the credibility of the results. However, to understand whether
results are robust, bounds were re-estimated by jointly imposing the two δ’s to be equal to the 75th per-
centile of the (absolute) difference observed in the pre-treatment period (p75). Results based on δSC,p75

and δtime,p75 are reported in Table C3. To save space, only results for the TE for the mortality rate
from AMI are shown (results for the other indicators are available upon request). What emerges from
Table C3 is that, despite the fraction of bounds not identified is slightly larger than in Table 5, results
are similar. Overall, it seems that, after the introduction of RPs, there was an increase in the mortality
rate from ischaemic heart diseases.

Not only were bounds re-estimated by setting the δ’s equal to p75, but as an ulterior sensitivity
exercise, a complete set of combinations of δSC and δtime was also be employed. To save space, only
results for the mortality rate from ischaemic heart diseases for Abruzzo are shown in Table C4. Overall,
results are in line with those reported in Table 5 for Abruzzo, and this holds for different combinations
of δSC and δtime (especially from 2014). Interestingly, when setting jointly δSC and δtime equal to 0,

36For further details on why these tests may be misleading, please refer to Section 6.
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the upper bound is always smaller than the lower bound, suggesting that the time invariance and SC
assumptions never hold jointly in the data. This latter result is perfectly in line with what was found
by Depalo (2019). Similar findings to those shown in Table 5 using δMAX were obtained for the other
regions exploiting different combinations of δSC and δtime, indicating that results obtained via bounds
are robust.

Next, different sensitivity exercises were performed to check whether the (C)NA assumption would
likely be satisfied. First, Eq. (4) and (5) were re-estimated by including up to three leads of the treatment
dummy to test for the presence of anticipatory effects. Regardless of the dependent variable considered,
I always fail to reject the null hypothesis of joint insignificance for the coefficients of the leads (except
for the c-section rate). These results are available upon request.

Second, Eq. (2) to (5) were also re-estimated by anticipating for each region the entrance in PdR by
two years. For the sake of brevity, these results are not shown. What emerges is that the coefficients
for intens(0), intens(1), f2005, and f2006 are always not statistically different from 0, suggesting that
there should not be anticipatory effects. These results hold for each dependent variable, except the
hospitalization rate, for which the coefficients are positive and statistically different from 0.

Lastly, results obtained by re-estimating Eq. (6) and (7) by excluding later-treated regions aligns
perfectly with those shown in Subsection 8.3. These results are available upon request.

Overall, these findings indicate that, except for the c-section rate, anticipation behaviors should be
a minor issue in such a context.

8.6 Discussion

Overall, results obtained using the TWM approach align with those found using milder non-parametric
assumptions. The ATT ’s estimated relying on the method proposed by Wooldridge (2021) go in the
same direction as the TE’s obtained via Manski and Pepper (2018)’s non-parametric estimator, and
this is true for each of the indicators under scrutiny, except for the log of current health expenditure,
the c-section rate, and the inefficiency ratio. In addition, results are robust to different sensitivity exer-
cises (see Subsection 8.5), suggesting that there may not be serious violations of the main identifying
assumptions needed for the parametric estimator to be consistent.

In light of the findings in the previous subsections, there is evidence that with the introduction
of Piani di Rientro, the Central Government effectively reduced costs and current health expenditure
in treated regions. In particular, cost containment was achieved through reduced hospital beds and
hospitalization rates (as expected by the policymaker). As also pointed out by Depalo (2019), reducing
hospitalization rates is the easiest way to reduce healthcare spending since they account for approxi-
mately 90% of the current health expenditure of Italian RHSs.

For what concerns current health expenditure – as explained in the previous subsections – the lack
of an effect when considering bounds could be due to identification problems rather than the absence of
such an effect. This hypothesis can be corroborated by the fact that after 2007, a substantial reduction
in the total deficit for public health spending is documented, as shown in Figure 1.

Although from the second version of Piani di Rientro, the Central Government gave both cost-
reduction and ELAs the same importance, these two objectives are incoherent unless the RHS can
experience efficiency gains. Using as a proxy of inefficient use of resources the ratio between the
hospitalization for DRG at high-risk inappropriateness versus those that cannot be avoided – one of
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the indicators constituting the Griglia LEA and part of the ex-post monitoring – what emerges is that,
except for Abruzzo and Calabria, the introduction of RPs did not reduce the level of inefficiencies in
treated RHSs. Moreover, when considering as a proxy for the inappropriateness of care the % c-sections,
a positive effect is detected; however, this result may be due to an increased demand for c-sections in
private hospitals (De Luca et al., 2021), rather than public hospitals effectively performing more c-
sections.

On the other hand, a deterioration in the quality of services provided – as proxied by the mortality
rate from ischaemic heart diseases – and in the perceived quality – as proxied by the % of patients
migrating to other regions for acute hospitalizations – is observed in treated regions (also in the long
run). Furthermore, introducing RPs seems to have had a negative – but to some extent smaller – effect
on the mortality rate (all causes) in treated RHSs. The fact that all of these indicators appear to have
been affected by the policy is well in line with the existing studies documenting that the mortality rate,
and in particular those from ischaemic heart diseases, is sensitive to variations in hospital supply and
healthcare spending cuts may have adverse (negative) effects (Brown et al., 2014; Golinelli et al., 2017;
Kwok et al., 2018; Arcà et al., 2020; Lobo et al., 2020). Also, the fact that the policy influences patients’
mobility is not surprising, as one of the main predictors of interregional patients’ mobility in Italy is
hospital supply (Balia et al., 2018).

Lastly, rank correlation coefficients were employed to understand whether the increase in the mor-
tality rate from ischaemic heart diseases and patients’ mobility was larger in regions that have ex-
perienced a larger reduction in hospital beds and hospitalization rates. Specifically, Kendall’s τ and
Spearman’s ρ were considered.

Both the two coefficients indicate a negative association between the bounds for τg,r,t for the hospi-
talization rate and the bounds for the mortality rate from ischaemic heart diseases. Similarly, the rank
correlation between the bounds for the TE for hospitalization rate and that of patients’ mobility is also
negative. The larger the reduction in the hospitalization rate, the worse the consequences on quality
indicators are in line with existing studies in medicine and health economics considering hospitaliza-
tion rate as a proxy for quality rather than for costs (e.g., Berchialla et al. (2010)). By contrast, the null
hypothesis of independence between the bounds for hospital beds and those for quality indicators is
never rejected.

Overall, these findings suggest that, with the introduction of RPs, the Central Government effec-
tively reduced healthcare spending and costs. Nonetheless, contrary towhat was expected from the pol-
icymaker, the policy did not improve the efficiency of RHSs, either in the long run, except for Abruzzo
and Calabria. By contrast, regions that experienced the largest reduction in hospitalization rates were
also those for which the largest negative consequences on the quality of the RHS were detected. These
findings are in line with those found by Depalo (2019). However, compared to this latter study, having
a much longer post-treatment period allows us to test whether the quality of services provided by the
RHSs is restored in the long run.

9 Conclusions

This paper contributes to the ongoing debate in health economics regarding the impact of health-
care spending cuts on citizens’ health outcomes. To this aim, novel evidence on the effect of a cost-
containment measure first introduced in Italy in 2007 on the performance of Italian RHSs is provided.
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Analyzing the Italian NHS is interesting since it is a decentralized-based, almost entirely publicly
funded system, where regions retain RHS’s management power. Despite the decentralization of the
NHS guarantees, to a certain extent, autonomy to local governments in the organization of the RHS,
from the 2000s, Essential Levels of Assistance were introduced to ensure that each citizen was granted
a minimum level of services and that these were equivalent across regions, thus allowing comparability
across Italian RHSs in terms of service quality and efficiency. Nonetheless, regions exhibit substantial
variability in the quality of services provided (Aimone Gigio et al., 2018), with the Northern regions
providing, on average, higher quality services.

Although, over the years, different measures have been implemented to devolve more responsi-
bilities to regional governments in managing the RHS to contain costs, the Central Government has
continued to finance ex-post the large deficit run by regional governments. This has led the public ex-
penditure, and consequently, the total deficit for public health spending, to grow dramatically. In this
context, in 2007, the Central Government introduced Piani di Rientro to curb excessive spending and
restore the financial stability of regional governments.

Sixteen years after the first PdR was signed, there is a unanimous consensus that this policy man-
aged to cut costs. However, most existing studies find contrasting evidence regarding the impact of the
policy on citizens’ health outcomes and the efficiency of RHSs.

This study provides novel evidence of the policy’s causal impact on a set of quality, efficiency, and
cost indicators. In particular, besides considering indicators that are part of the ex-post monitoring,
other commonly-used quality proxies are used. By analyzing the impact of the policy on variables that
are not part of the ex-post monitoring, whether regions have strategically outperformed on indicators
that discriminate on their ability to receive funds can be tested.

To the best of my knowledge, this is the first paper that assesses PdR’s long-run impact, considers
the staggered nature of the policy, and allows heterogeneity of treatment effects across regions and over
time. By resorting to the DiD decomposition (Goodman-Bacon, 2021), why failing to take into account
the staggered nature of the policy and the fact that the treatment effect is likely to vary over time and
across treated RHSs may lead to biased results is shown. Then, to consider the features of the policy and
overcome the pitfalls of the classic TWFE estimator – commonly used in the literature of PdRs – the
estimator proposed by Wooldridge (2021) is relied upon. This approach allows retrieving a consistent
estimator of the ATT in a context with variation in treatment timing by introducing heterogeneity
of treatment effects within the simple linear regression framework. Moreover, compared to existing
studies, to overcome the problem of having few (treated) clusters – which leads the classic cluster-
robust variance-covariance estimator to over-reject H0 – the subcluster wild bootstrap proposed by
MacKinnon and Webb (2018) is also employed.

However, the Two-way Mundlak approach, besides requiring that the treatment is at an absorbing
state (i.e., no leavers), hinges upon a generalization of the parallel trends and no-anticipation assump-
tions for identification. If any of these assumptions are seriously violated, the treatment effect’s estima-
tor can be proved inconsistent. Since, in this context, at least one of these assumptions is likely violated
for some dependent variables, results obtained by relying on milder non-parametric assumptions are
also provided, the bounded variation assumptions proposed by Manski and Pepper (2018).

Using bounds allows the researcher to directly model the uncertainty about the validity of identify-
ing assumptions to retrieve a consistent estimator of the TE. In addition, one of the main advantages
of relying on assumptions of bounded variation is that the exact reasons for violating the identifying
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assumption should not be known to the researcher, with the only requirement being that the level of un-
certainty is specified ex-ante. The higher the level of uncertainty, the more credible the results Manski
(2003). Besides technical reasons, exploiting this non-parametric approach is interesting as it makes it
possible to estimate region-specific treatment effects, thus shedding light on the results obtained using
the parametric approach.

Overall, the results obtained using the above estimators suggest that PdRs effectively reduced costs,
and cost containment was pursued by reduced hospital beds and hospitalization rates. However, con-
trary to what was expected from the policymaker, except for Abruzzo and Calabria, the policy did not
improve the efficiency of treated RHSs. Still, it led to an unintended deterioration in the quality of
treated regions – as proxied by indicators not part of the ex-post monitoring. These findings are robust
to different sensitivity exercises and hold even in the long run. For almost all the variables, results ob-
tained via the parametric approach go in the same direction as those estimated using bounds. I view the
fact of performing inference relying on both the parametric (TWM) and the non-parametric approach
as one of the strengths of this paper, as this allows us to understand how the results are robust to the
relaxation of the identifying assumptions, as also stated by Manski and Pepper (2018).

Lastly, the larger negative consequences were documented in those regions that experienced amore
drastic reduction in hospitalization rates. This last finding aligns with existing studies documenting
that decreasing the hospitalization rate is associated with worse health outcomes (e.g., Berchialla et al.
(2010)).

To conclude, the results presented in this paper suggest that Recovery Plans effectively reduced
costs. Nonetheless, cost containment did not translate into efficiency gains but an unintended deteri-
oration in the quality of services provided by treated RHSs. I believe these findings, coupled with the
fact that regions that faced a less abrupt reduction of costs experienced a less severe deterioration in the
quality of services provided, may inform policymakers about the importance of taking a more gradual
approach toward healthcare spending cuts. Sudden drops in health spending unavoidably translate into
worse health outcomes without necessarily enhancing the efficiency of healthcare providers.
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A Appendix A

Table A1: Examples of DRG at high-risk of inappropriateness

DR Description DRG

13 Multiple sclerosis and cerebellar ataxia
19 Cranial and peripheral nerve disorders (without complications)
36 Retina surgery
38 Iris primary surgery
39 Crystalline lens surgery with or without vitrectomy
40 Extraocular structures surgeries except for eye socket, aged > 17.
41 Extraocular structures surgeries except for eye socket, aged < 18.
59 Tonsillectomy and/or adenoidectomy (aged 17+)
60 Tonsillectomy and/or adenoidectomy (aged < 18)
133 Atherosclerosis without complications (except emergencies)
490 H.I.V. associated with or without comorbidities
563 Convulsions (aged 17+) without complications
564 Cephalalgia (aged 17+)
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B Causal Inference Review

In this Appendix, a short overview of how to derive the counterfactual outcome – that is, the outcome
one would observe had the policy not been implemented –and, in turn, the average treatment effect
on the treated will be presented. In particular, in Subsection B.1, which are the main assumptions
made in the program evaluation literature, and what these assumptions imply will be reviewed. Next,
Subsection B.2 will show why the classic Two-way Fixed Effects estimator – which is commonly used
in the existing literature to estimate the impact of Recovery Plans on health-related outcomes – might
be biased in a context with variation in treatment timing, as the one under analysis. Subsection B.3
will then present the estimator proposed by Wooldridge (2021), which overcomes the issues discussed
in Subsection B.2 and allows the researcher to retrieve a consistent estimator of the causal estimand of
interest in a staggered treatment adoption setup. Lastly, Subsection B.4 will briefly review the problem
of how to perform (valid) inference in a context with few treated clusters.

B.1 Deriving the Counterfactual Outcome

Following Neyman (1923), Rubin (1974), and others, the potential outcome framework is used to define
the parameters of interest. For simplicity, the same notation introduced in Section 6 will be employed.
Let the random variable wg,t denote a binary treatment with support in {0, 1}. wg,t = 1 will then
denote whether unit g at time t was treated, with g = 1, . . . , G and, t = 1, . . . , T .37

As stated by Wooldridge (2021), a staggered entry can be viewed as potentially leading to different
levels of exposure to the policy, depending on when the unit was first treated. The intuition behind
this latter statement is that units treated earlier are exposed to the policy for an extended period. Let q

be the first period in which the policy is implemented; then, assuming there is a never treated group,
one can define T − q + 2 mutually-exclusive cohort dummies, dg,q, . . . , dg,T , indicating when unit g

first received the treatment. Since the adoption with variation in treatment timing can be perceived
as generating different intensities of the treatment effect, a way to model this problem is to exploit
an expanded set of potential outcomes (Wooldridge, 2021). For r ∈ {q, . . . , T}, yg,t(r) will represent
the potential outcome for unit g at time t had the policy been introduced by period r (i.e., dg,r = 1),
whereas yg,t(∞) will denote the analogous in period t had the treatment not been received (that is, had
the unit never been treated).

Using the above notation, the causal effect of the policy at time t for a specific unit g first receiving
the treatment in r will be given by teg,t = yg,t(r)−yg,t(∞).38 Then, the realized outcome for a generic
unit can be rewritten as:

yg,t =yg,t(∞) + dg,q · [yg,t(q) − yg,t(∞)] + dg,q+1 · [yg,t(q + 1) − yg,t(∞)]

+ . . . + dg,T · [yg,t(T ) − yg,t(∞)]

where dg,q +dg,q+1 + . . .+dg,T +dg,never = 1. Oftentimes, however, the causal estimand of interest

37For simplicity, to keep notation in line with that introduced in Section 6, units will be denoted with g and. In addition,
without any loss of generality, g will also represent the level at which standard errors will be clustered in the following
subsections. Indeed, it is common in the DiD literature to cluster standard errors at the level at which the treatment is
assigned (Cameron and Miller, 2015).

38As pointed out by Wooldridge (2021), other possible treatment effects can be retrieved in this framework. For instance,
another possibility would be to estimate the treatment effect given by teg,t = yg,t(r) − yg,t(r + 1) for t ≥ r. This latter
represents the cumulative effect of being first treated in period r rather than in period r + 1.

55



is the average treatment effect on the treated, ATT , in periods where the treated cohorts are effectively
under the policy. That is:

τr,t = E(teg,t(r)|dr = 1), r ∈ {q, . . . , T}; t = r, . . . , T (B.1)

where to have at least a never treated period, it is usually imposed that q ≥ 2.
The problem of how to estimate yg,t(∞) represents the fundamental problem of causal inference

(Holland, 1986). If, for a moment, we abstract from the fact that we are in a staggered intervention
setting and think in terms of a common entry setup,39 then units can be either treated or not, and the
complete set of potential outcomes shrinks to two mutually-exclusive potential outcomes (i.e., either
yg,t(r) or yg,t(∞)). Then, as noticed by Manski and Pepper (2013), the fact that data will reveal only
one of the two mutually-exclusive quantities constitutes the selection problem. While yg,t(r) will be
observed for all treated units, the problem will be to find a way to infer the benchmark outcome unit g

would have experienced at time t had the policy not been introduced by period r. That is, yg,t(∞).
In the program evaluation literature, yg,t(∞) is usually retrieved by invoking an "exact" invariance

assumption (Imbens and Wooldridge, 2009; Depalo, 2019). Following Depalo (2019), these assump-
tions can be divided into four main groups. The time invariance assumption exploits the outcome
observed in the pre-treatment period for the treated unit g to estimate the benchmark outcome. That
is, ŷg,t(∞) = yg,pre(∞) where pre ∈ {1, . . . , q} and q = r − 1. Another common way to retrieve the
counterfactual outcome, yg,t(∞), is to rely on a state invariance assumption, which uses (often a linear
combination of) the observed outcomes in the never-treated units. If never denotes the set of never-
treated units, then for t ≥ r, one way to retrieve ŷg,t(∞) is either to impose ŷg,t(∞) = ynever,t(∞) or
ŷg,t(∞) = E(ynever,t(∞)). Depending on the setting at hand (common entry vs. staggered rollout) and
whether it is more plausible that the assumption is valid only after conditioning on observable char-
acteristics or not, one can invoke a "suitable" parallel trends assumption to estimate the benchmark.40

This assumption requires that had the policy not been implemented, the average outcome evolution for
the treated and not-yet-treated – or never-treated, depending on which reference group is considered –
would have remained the same over time (e.g., in the case of an unconditional parallel trends based on
a never-treated group this would imply that E(yt(∞) − y1(∞)|dq, . . . , dT ) = E(yt(∞) − y1(∞))).41

The last group includes the time-varying parallel trends assumption. To retrieve the counterfactual,
yg,t(∞), a weighted average of the units in the donor pool period is used, where the weights are cho-
sen appropriately according to the Synthetic Control Method first proposed by Abadie and Gardeazabal
(2003) (i.e., ŷg,t(∞) = wynever,t≥r(∞) where w is the vector of selected weights). For a review of the
Synthetic Control Method, please refer either to Appendix A of Depalo (2019), in which the author
briefly reviews how this procedure works and its potential pitfalls, or to Abadie (2021).

39Please note that this simplification is just for expositional convenience and does not affect the following analysis.
40Given the recently developed Difference-in-Differences (DiD) estimators, depending on the problem at hand (e.g., com-

mon entry vs. variation in treatment timing) and the estimator employed to carry out the policy evaluation exercise, there
exist different types of common trends assumptions. Some variations of this assumption will be explained in the Section B.3.

41Please note that if a common entry setup is considered, then there are only two mutually exclusive groups: treated and
untreated. Thus, the distinction between never-treated and not-yet-treated units is redundant.
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B.2 TWFE & DiD Decomposition

As mentioned in Section 6, most of the existing studies on recovery plans estimate the causal effect of
the policy relying on some variation of the classic TWFE estimator. However, there exists a recent lit-
erature in program evaluation proving that the estimated coefficient of the treatment dummy obtained
via TWFE is an inconsistent estimator for the causal estimand of interest in a context with variation in
treatment timing (Borusyak et al., 2021; Goodman-Bacon, 2021; De Chaisemartin and d’Haultfoeuille,
2022a). Using the notation introduced above, let us consider the following regression model:

yg,t = βwg,t + cg + ηt + ug,t g = 1, . . . , G, t = 1, . . . , T (B.2)

where cg are unit-specific fixed effects (FE), ηt are year FE, and ug,t is the error term. It can be shown
that the estimator for β, in the context of a multi-period setup with variation in treatment timing,
does not identify the ATT anymore. The equivalence between the canonical (2 × 2) Difference-in-
Differences (DiD) and the TWFE no longer holds (Imai and Kim, 2021). In the context of a staggered
setup with treatment at an absorbing state – that is, once the unit g receives the treatment, it remains
treated for the remainder of the panel (i.e., wg,s ≤ wg,t for s < t) – Goodman-Bacon (2021) shows that
the estimator for β in (B.2) is a convex-weighted average of all the possible combinations of (2 × 2)
DiD estimators.

To give the intuition behind this result, for simplicity, suppose that the panel is balanced with T

periods and G cross-sectional units, only three groups exist, and there are no leavers: units can be
either never-treated or receiving the treatment in period k (early treated) – where k ∈ t = 2, . . . , T

(i.e., there is at least one period in which all units are untreated) – or in period l > k (later treated).
Goodman-Bacon (2021) proves that there will exist overall four pairs of (2 × 2) DiD estimators in this
case.42 As shown in Figure B.1, if Eq. (B.2) is estimated using only either units treated in period k and
never-treated units (Panel A) or units treated in period l and never treated group (Panel B), then the
TWFE reduces to the classic DiD estimator. In particular, following Goodman-Bacon (2021), it can be
proved that:

β̂2×2
j,never ≡

(
ȳ

P OST (j)
j − ȳ

P RE(j)
j

)
−

(
ȳP OST (j)

never − ȳP RE(j)
never

)
, j = k, l (B.3)

Panels C and D of Figure B.1, instead, plot what would happen if Eq. (B.2) is estimated using only
timing groups (that is, groups k and l). Identification in these two plots comes from these two groups
receiving the treatment in different periods. Specifically, before l, the early-treated group act as the
treatment group since it is the group that experiences a switch in the treatment status at period k < l

(Panel C). At the same time, the later-treated group serves as a benchmark for the early-treated since it
is still not under treatment in this period. It can be shown that the estimated coefficient for β obtained
by estimating Eq. (B.2) using these two groups is equal to:

β̂2×2,k
k,l ≡

(
ȳ

MID(k,l)
k − ȳ

P RE(k)
k

)
−

(
ȳ

MID(k,l)
l − ȳ

P RE(k)
l

)
(B.4)

where now the time window considered goes from the pre-treatment period in which group k is

42The author uses the term (2 × 2) to refer to a pair made up of a group whose treatment status changes over the
observed period and a group whose treatment status is, instead, stable and a time window of two periods (P RE and P OST
the introduction of the policy)
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Figure B.1: Source: p. 257 Goodman-Bacon (2021)

still not treated and the period MID(k, l), where group k is treated, but group l is not.
In Panel D, early-treated units act as a control for those receiving the treatment in period l. This

latter pair is often referred to in the DiD literature as a "forbidden comparison", as later-treated will be
compared to already-treated units. In this latter case, the estimator for β will be:

β̂2×2,l
k,l ≡

(
ȳ

P OST (l)
l − ȳ

MID(k,l)
l

)
−

(
ȳ

P OST (l)
k − ȳ

MID(k,l)
k

)
(B.5)

Please note that each subsample employs a fraction of the full sample. To estimate Eq. (B.3) only two
groups out of four are employed. By contrast, all time periods are used. This implies that their sample
shares will be equal to nk + nnever and nl + nnever , where nj =

∑
g 1{tg = j}/G, j = k, l, never.

To estimate Eq. (B.4), also two groups are considered, but only some periods. In this case, the subsample
share will be equal to (nk + nl) (1 − w̄l), where w̄l ≡

∑
t 1{t ≥ l}/T , which is the share of time for

which groups l remains treated. Lastly, only two groups and some periods are used to estimate Eq.
(B.5). Overall, the subsample share used to obtain β̂2×2,l

k,l amounts to (nk + nl) w̄k.
The author also shows that it is possible to quantify the amount of identifying variation used

to estimate (B.3)– (B.5). This "equals the variance of fixed-effects-adjusted wg,t from its subsamples"
(Goodman-Bacon, 2021, p. 257):

V̂ w
j,never ≡ nj,never (1 − nj,never) w̄j (1 − w̄j) , j = k, l (B.6)

V̂ w,k
k,l ≡ nk,l (1 − nk,l)

w̄k − w̄l

1 − w̄l

1 − w̄k

1 − w̄l
(B.7)

V̂ w,k
k,l ≡ nk,l (1 − nk,l)

w̄l

w̄k

w̄k − w̄l

w̄k
(B.8)

where na,b ≡ na
na+nb

represents the relative size, in each (2 × 2) pair, of the group that receives the
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treatment.
In each of the pairwise variance formulas above, if either nj,never or nk,l goes to 0 or 1, then the

variance degenerates to 0. This is because there will not be either a treatment or a control group. The
third and the fourth terms in the variance formulas, instead, tell the time in which the treatment is
assigned in that specific subsample. Since w̄ represents the variance of wg,t in each (2 × 2) pair, if this
goes to 0 or 1, then the treatment status does not change over the observed period.

Goodman-Bacon proves that the TWFE estimator for β is a weighted average of these four (2 × 2)
DiD estimators, such as those in (B.3)– (B.5), where weights are proportional to subsample shares and
the variance of wg,t (where the variance is highest for units treated in the middle of the panel).

This reasoning can be generalized to more than three groups. Using the notation introduced in the
previous subsection, suppose there exists a never treated group and that there are new treated units in
each period r with r ∈ {q, . . . , T} and q > 1. Then the author proves that:

β̂ =
∑

r

sr,neverβ̂2×2
r,never +

∑
r

∑
l>r

[sr
r,lβ̂

2×2,r
r,l + sl

r,lβ̂
2×2,l
r,l ] (B.9)

where, as before:

β̂2×2
r,never ≡

(
ȳP OST (r)

r − ȳP RE(r)
r

)
−

(
ȳP OST (r)

never − ȳP RE(r)
never

)

β̂2×2,r
r,l ≡

(
ȳMID(r,l)

r − ȳP RE(r)
r

)
−

(
ȳ

MID(r,l)
l − ȳ

P RE(r)
l

)

β̂2×2,l
r,l ≡

(
ȳ

P OST (l)
l − ȳ

MID(r,l)
l

)
−

(
ȳP OST (l)

r − ȳMID(k,l)
r

)
and the weights are equal to:

sr,never =
(nr + nnever)2 V̂ w

r,never

V̂ w

sr
r,l =

((nr + nnever) (1 − w̄l))2 V̂ w,r
r,l

V̂ w

sl
r,l =

((nr + nnever) w̄r)2 V̂ w,r
r,l

V̂ w

and
∑

r sr,never +
∑

r

∑
l>r[sr

r,l + sl
r,l] = 1 where, again, r ∈ {q, . . . , T}.

Overall, there will be at most T −q+2 possible pair of (2 × 2)DiD estimators. Two points are worth
to be noted. First, weights depend on the size of the subsamples (squared) and the subsample variances
in (B.6)–(B.8), where the variances will be larger whenever either the two groups are approximately
similar in size or when the treatment occurs in the middle of the time window. Second, by simply
modifying the dimension of the panel under analysis, the estimate of β can change dramatically even
if the 2 × 2 DiD estimators are constant.

In the limit, the author proves that:

plim
G→∞

β̂ = V WATT + V WPT − ∆ATT
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Where V WATT represents a variance-weighted average of treatment effects, the second term,
V WPT , comes from the fact that each pair of DiD relies on a pairwise parallel trends assumption
for identification. Thus V WPT represents a generalization of the parallel trends assumption to the
staggered entry setup. The last term, ∆ATT , is the variation in the treatment effect. It is immediate
to see from the Goodman-Bacon’s DiD decomposition that, even if there is no treatment effect hetero-
geneity, the estimated coefficient from the classic TWFE regression is not estimating the ATT , but a
variance-weighted version of it.

In the absence of treatment effect heterogeneity (across either time or units), the β̂ can be proved to
be a variance-weighted average of ATT , with all weights being positive. Conversely, if the treatment
effect is likely to be heterogeneous, then the problem of negative weights arises. This is because when
already-treated units serve as controls for the later-treated, "changes in their outcomes are subtracted,
and these changes may include time-varying treatment effects" (Goodman-Bacon, 2021, p. 2).

B.3 Two-Way Mundlak Approach (TWM)

Different estimators have been recently proposed to prevent the issue of negative weights discussed
in Section B.2 and thus to retrieve a consistent estimator of the ATT in the context with staggered
treatment adoption. For instance, see Borusyak et al. (2021); Callaway and Sant’Anna (2021); Sun and
Abraham (2021); Wooldridge (2021); De Chaisemartin and d’Haultfoeuille (2022a).43

However, Wooldridge (2021) shows there is nothing intrinsically wrong with the TWFE estimator.
The main problem with this estimator is that it is often applied to a model too restricted in the number
of parameters. He proves the equivalence between the TWFE estimator and the Pooled OLS (POLS)
estimator applied to a regressionwhich includes time-specific cross-sectional averages and unit-specific
time averages, the Two-way Mundlak approach (TWM).44 This result is paramount as it allows us to
understand better how the TWFEworks. Besides, when applied to carry out policy evaluation exercises,
the TWM tool permits retrieving a consistent estimator of the ATT within the staggered treatment
adoption setting.

Depending onwhether there exist never-treated units or not, Wooldridge shows that differentATT

can be retrieved. To save space, and since in the context described in Section 3, there exists more than
one untreated unit, how to infer something about the average treatment effects on the treated presented
in (B.1) will only be explained.

Wooldridge shows that a consistent estimator for (B.1) can be retrieved by estimating the following
regression via POLS:

yg,t = α +
T∑

r=q

T∑
s=r

τr,s(wg,t · dg,r · fst) +
T∑

r=q

λrdg,r + ηt + ug,t (B.10)

where α is the constant, ηt are year FE, and fst is a dummy variable equal to 1 if s = t and
zero otherwise. It should be noticed that wg,t · dg,r · fst = dg,r · fst for s ≥ r. Including wg,t in
(B.10) highlights that it is still possible to obtain a consistent estimator of the ATTs in a staggered
rollout context. Further, it shows that considerable heterogeneity can be allowed within the simple

43Please refer to Roth et al. (2023) and De Chaisemartin and d’Haultfoeuille (2022b) for an in-depth review of all the
recently developed DiD-type estimators.

44This equivalence holds only in the context of balanced panels. However, this does not represent a threat in the context
of RPs, as the panel under analysis is balanced.
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linear regression framework. An equivalent TWFE estimator can be obtained by applying the within
estimator to (B.10), after having dropped dg,q, . . . , dg,T . This is because, in (B.10), dr represents the
time average of wg,t (for all treated units in a given cohort). While, for each t, fst’s represent the
cross-sectional averages.

To estimate consistently τr,t, besides requiring that the treatment is at an absorbing state (i.e., no
leavers), two additional assumptions are needed for identification. The first rules out anticipatory be-
haviors.

No Anticipation (NA): For each treatment cohort r ∈ {q, . . . , T}

E(yt(r) − yt(∞)|dq, . . . , dT ) = 0, ∀t < r

This means that, on average, the potential outcomes between treated and never-treated units are
the same in the pre-intervention period, regardless of when a unit is first treated. This is similar to the
strict exogeneity assumption required to estimate FE in panel data models.

The second assumption is a generalization of the parallel trends assumption to the multi-period
setup with variation in treatment timing.

parallel trends (PT): For each dr with r ∈ {q, . . . , T}

E(yt(∞) − y1(∞)|dq, . . . , dT ) = E(yt(∞) − y1(∞))

where t = {2, . . . , T}. This assumption requires the average evolution in the benchmark state
to be mean independent of the treatment status. The common trends (CT) assumption can be stated
equivalently in terms of adjacent periods as follows:

E(yt(∞) − yt−1(∞)|dq, . . . , dT ) = E(yt(∞) − yt−1(∞))

where in each of the two versions of the PT assumption, it is implicitly assumed that for each
r ∈ q, . . . , T , there is a positive probability that some units are receiving the treatment. If, for instance,
for r = q + 3, there is no unit entering the treatment, then τq+3,t cannot be identified.

Suppose the researcher believes the PT or NA assumption is unlikely to hold. One of the main
advantages of the TWM approach is that it allows the researcher to relax these assumptions by condi-
tioning on observable characteristics and allowing the ATT to vary with them.

Suppose xg denotes a vector of (time-invariant) covariates. The NA assumption can be modified
such that the TE should be zero for each subpopulation defined by x (Wooldridge, 2021).

Conditional No Anticipation (CNA): For each treatment cohort r ∈ {q, . . . , T},
Similarly, the PT assumption can be modified as follows:

E(yt(r) − yt(∞)|dq, . . . , dT , x) = 0, ∀t < r

Conditional parallel trends (CPT): For each dr with r ∈ {q, . . . , T} and covariates x,

E(yt(∞) − y1(∞)|dq, . . . , dT , x) = E(yt(∞) − y1(∞)|x)
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Accordingly, the causal estimands of interest become:

τr,t(x) = E(tet(r)|dr = 1, x)

Which are the ATTs after having conditioned on observable characteristics. Assuming also that
the model is linear in the parameter, then it is possible to estimate the coefficients of the following
regression consistently via POLS:

yg,t =α +
T∑

r=q

T∑
s=r

τr,s(wg,t · dg,r · fst) + xgκκκ +
T∑

r=q

(dg,r · xg)γγγr +
T∑
s

(fst · xg)πππs

T∑
r=q

T∑
s=r

(wg,t · dg,r · fst · ẋg,r)ρρρr,s +
T∑

r=q

λrdg,r + ηt + ug,t

(B.11)

where s = {2, . . . , T}, ẋg,r = (xg − µµµr), and µµµr = E(xg|dr = 1). The idea to center x about the
mean of the x’s over the treated cohorts ensures that τg,t represents the ATT (Wooldridge, 2021).45 If
all the terms involving dr , xg , and dg,r ·xg are dropped, an equivalent TWFE estimator to that obtained
by applying POLS to (B.11) can still be retrieved.

It is easy to understand how much flexibility can be introduced within the simple linear regression
framework from eq. (B.11). If, on the one side, this guarantees that a consistent estimator of the ATT ’s
can still be retrieved within the linear regression framework, on the other hand, even if the dimension
of T is moderate, the number of parameters to be estimated in (B.11) is huge. Specifically, it could be the
case that for some r ∈ q, . . . , T , no new units are being treated (that is, some cohorts may not exist),
causing some of the τr,t not to be identified. Even if there are new units receiving the policy for each
r ∈ q, . . . , T , it could be that only a tiny fraction of them enters the treatment in a particular period,
causing the τr,t’s – and consequently, confidence intervals – to be imprecisely estimated.

To overcome this issue, Wooldridge proposes two solutions. Either to estimate (B.11) and then
aggregate them in a small number of TE – taking, for instance, a linear combination – or to impose
ex-ante restrictions on the number of parameters to be estimated. For instance, one could group treated
units into two mutually-exclusive cohorts (early vs. later treated units), or one can allow the ATT to
vary only over time by imposing homogeneity across treated cohorts. Another possibility could be to
require homogeneity over time, allowing the ATT to vary by cohorts or imposing restrictions on the
covariates, for example, by requiring them to vary only across treatment status.

As pointed out by the author, ex-ante restrictions can be easily tested by estimating the unrestricted
and the restricted models and then constructing a Wald statistic to test the exclusion restrictions.

B.4 Inference

In the context of clustered data with a balanced number of observations per cluster, the consistency
of the cluster-robust variance-covariance estimator (CRVE) hinges upon the fact that, as the number
of clusters, G, goes to infinity, the distribution of the cluster-robust statistic at hand approaches the
actual distribution.46 However, when G is small, the cluster-robust t-statistic can severely over-reject

45Note it is sufficient to de-mean the x’s only when interacted with wg,t.
46For a thorough review of the cluster-robust literature, please refer to Cameron and Miller (2015) and MacKinnon et al.

(2023).
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(MacKinnon and Webb, 2018). In this latter case, more reliable inference can be attained by using a
bootstrap approximation.

To overcome the issue of over-rejection, Cameron et al. (2008) propose using a bootstrap procedure
that maintains regressors fixed across bootstrap replications, the wild cluster bootstrap (WC). Monte
Carlo simulation results in Cameron et al. (2008) suggest that, in a context with few clusters, the WC
bootstrap solves the problem of over-rejection that not even the percentile bootstrap tends to eliminate.
Using the notation introduced above, let zg,t = (wg,t cg ηt) denote a row vector including all the
regressors in (B.2), with g = 1, . . . , G and t = 1, . . . , T . Let θθθ be a column vector containing all the
coefficients in (B.2). Then (B.2) can be rewritten as follows:

yg,t = zg,tθθθ + ug,t (B.12)

The scheme proposed by Cameron and Miller (2015) will be followed to give the main intuition
behind the WC bootstrap. Suppose it is of interest testing whether β in (B.2) is statistically different
from 0, then the WC bootstrap works as follows. First, estimate (B.12) by imposing H0 : β = 0 to
obtain an estimate of θ̃θθH0 . Second, derive the tth residual within cluster g, ũg,t = yg,t − zg,tθ̃θθH0 . If the
bootstrap procedure is replicated B times, for each bth replication one should:

1a) Assign cluster g a weight, tg , following the two-point Rademacher distribution taking values in
the support in {−1, 1}, where prob(tg = −1) = prob(tg = 1) = 0.5. All observations for unit g

will receive the same value of tg .

1b) Create the pseudo-residuals, u∗
g,t, as u∗

g,t = tg × ũg,t. Then the new outcome variables, y∗
g,t, can

be generated as y∗
g,t = zg,tθ̃θθH0 + u∗

g,t

2) Obtain an estimate of β̂∗
b for the bth resample by regressing y∗

g,t on zg,t.

3) Compute the test test∗
b = (β̂∗

b −β̂)
se(β̂∗

b
) , where se(β̂∗

b ) is the standard error of β̂∗
b , whereas β̂ represents

the estimate of β obtained using the full sample.

Then the bootstrapped p-value will be the fraction of times that |test| > |test∗
b |, where b =

1, . . . , B.
Unlike the pair bootstrap, regressors are now kept fixed in each resample. By stacking observations

for the gth cluster in a vector, it can be shown that having regressors fixed implies that, for each draw,
y∗

g will either be equal to y∗
g = Zgθ̃θθH0 + ũg or y∗

g = Zgθ̃θθH0 − ũg . Webb (2013) shows that only 2(G−1)

possible values of test∗
1, . . . , test∗

B can be obtained at most. This causes problems when G is small,
as the researcher may end up choosing "just one point from the interval of equally plausible p-values"
(Cameron and Miller, 2015, p. 27). To avoid this issue, when G < 10, Webb (2013) proposes using a
six-point distribution for tg with equally-probable values, {−

√
1.5, −1, −

√
.5,

√
.5, 1,

√
1.5}.

Simulation-based evidence in MacKinnon and Webb (2017) suggests that the WC bootstrap also
performs well when 15 ≤ G ≤ 20, with rejection frequencies close to nominal levels (provided that
the size of clusters is approximately equal). Conversely, this procedure fails when inference is carried
out on a dummy variable taking value 1 only for a few clusters. In such a case, MacKinnon and Webb
(2018) finds that the test based on the unrestricted wild cluster bootstrap (WCU) – obtained by not
imposing H0 – can lead to severe over-rejection when the number of treated cluster, G1, is either equal
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to 1 or 13 but performs fairly well for 6 ≤ G1 ≤ 8. In contrast, tests based on the restricted wild cluster
(WCR) bootstrap fail to reject when G1 = 1 or G1 = 13, under-reject when G1 = 2 or G1 = 12, work
fairly well when G1 = 11, and over-reject for other small values of G1.

To give the intuition why the WC bootstrap fails in a context with few treated clusters, the same
example provided byMacKinnon andWebb (2018) will be used. SupposeG1 = 1, then each observation
within the treated cluster will be assigned the same value of tg , implying it is always the case that u∗

g ∝
ũg . If, on one side, this peculiarity of the WC bootstrap ensures that, for each cluster, the bootstrapped
disturbances mimic the variance-covariance structure of the true disturbances. Conversely, when G1

is small, inference may be imprecise.
To overcome this issue, MacKinnon and Webb (2018) suggest relying on a variation of the WC

bootstrap, the subcluster wild bootstrap. The main goal of this procedure is to eliminate the dependence
of u∗

g on ũg . To do so, the subcluster wild bootstrap still relies on a version of the CRVE to obtain
cluster-robust standard errors. However, rather than multiplying each observation within cluster g by
tg , this bootstrap procedure partitions ũg intomutually-disjoint subclusters andmultiplies each of them
by a random weight. When each subvector is a singleton, the subcluster wild bootstrap will converge
to the ordinary bootstrap.

MacKinnon and Webb (2018) find that, when G1 is small, the ordinary wild bootstrap may lead to
improved finite-sample inference if the following three assumptions are satisfied:

1. Cluster sizes should be equal and the sample size fixed.

2. The average within-cluster correlation should be small when the number of treated clusters is
small.

3. The covariance matrices Ωg need to be proportional, but between-cluster heteroskedasticity is
allowed. That is, Ωg = λgΩ̄, where Ω̄ is a positive-definite matrix, λg is a scalar factor with
λ1 = 1, and λg > 0.

It is easy to check whether Assumption 1 is satisfied, as both the sample dimension and the cluster
sizes are directly observable from the researcher. As far as Assumption 3 is concerned, MacKinnon and
Webb (2018) state that it is likely to hold as any cross-cluster heteroskedasticity is allowed. Conversely,
Assumption 2 is more difficult to check whether it holds in practice. However, Monte Carlo simulations
in MacKinnon and Webb (2018) show that potential violations to Assumption 2 do not significantly
affect inference when G1 ≥ 2, provided that the within-cluster correlation is not large. Furthermore,
the authors also show that one way to check whether Assumption 2 holds is to look at the p-values of
the restricted and unrestricted ordinary wild bootstrap. If the p-values are similar, with the p-value of
the restricted wild bootstrap being larger than the p-value of the unrestricted, Assumption 2 is likely to
hold. For a thorough discussion on how the subcluster wild bootstrap works, please refer toMacKinnon
and Webb (2018).
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C Additional Results

Figure C.1: TWM results – ATT that varies by calendar time

(a) ln(Current health exp) (b) Mortality rate from ischaemic heart diseases

Notes: Results depicted in Panel (a) were obtained by estimating (5) using as the dependent variable the log of current
health expenditure. Panel (b) reports τ̂s obtained by estimating (5) using as the dependent variable the mortality rate from
ischaemic heart diseases. Coefficients, in both Panels, are reported with 95% confidence intervals obtained via the subcluster
wild bootstrap (MacKinnon and Webb, 2018) with Rademacher weights. Specifically, the t-statistic is obtained through a
CRVE estimator (where the level of clustering is at the RHS level), whereas the resampling is carried out at the RHS-year
level.

Figure C.2: TWM results – ln(Current health exp) with cluster-robust s.e.

(a) Without controls (b) With controls

Notes: The above regressions include 357 RHS-year observations. Results depicted in Panel (a) were obtained by estimating
(2) using as the dependent variable the log of current health expenditure. In Panel (b) are shown the results obtained by
estimating (3). Coefficients are reported with 95% confidence intervals. Standard errors are clustered at the RHS level to
account for the potential serial correlation of the error term.

65



Figure C.3: Sun and Abraham results – ln(Current health exp)

(a) Without controls (b) With controls

Notes: The above regressions include 357 RHS-year observations. Results depicted in Panel (a) were obtained by exploiting
the estimator proposed by Sun and Abraham (2021) – by not conditioning on covariates – using the log of current health
expenditure as the dependent variable. Panel (b) are shown the results obtained using the estimator proposed by Sun and
Abraham (2021) by conditioning on covariates. Coefficients are reported with 95% confidence intervals. Standard errors are
clustered at the RHS level to account for the potential serial correlation of the error term.
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Table C2: Bounds on treatment effect based on (δT,Max , δSC,Max)

Abruzzo Calabria Campania Lazio Liguria Molise Piemonte Puglia Sardegna Sicilia

Hospitalization rate (acute)
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

2007 -23.03 16.20 -4.52 14.26 -11.81 -5.15 -24.63 17.17 -24.56 6.17 -22.69 11.17 -27.78 9.22
2008 -39.48 -1.60 -4.46 13.44 -11.56 -6.81 -25.56 16.24 -34.21 -4.43 -24.78 8.11 -33.81 3.19
2009 -56.60 -15.48 -6.29 8.70 -14.65 -12.31 -36.38 5.42 -48.17 -15.12 -32.36 -2.53 -45.50 -8.70
2010 -62.62 -22.41 -21.56 -1.29 -15.06 -2.49 -39.63 2.17 -41.78 -9.20 -2.64 10.56 -29.67 -2.30 -43.43 -8.86
2011 -64.46 -27.97 -29.42 -4.70 -16.61 -7.26 -51.81 -10.01 -55.49 -25.53 -4.04 8.80 -22.73 1.73 -27.34 -3.09 -47.52 -16.88
2012 -64.14 -28.94 -35.84 -10.00 -17.73 -10.19 -39.65 2.15 -65.99 -37.17 -5.86 7.34 -29.91 -4.02 -29.55 -7.17 -47.84 -18.58
2013 -63.41 -30.72 -44.77 -18.06 -20.64 -14.55 -40.17 1.63 -64.70 -37.70 -7.12 3.27 -33.84 -6.81 -34.21 -13.32 -52.31 -24.20
2014 -68.00 -35.56 -52.66 -26.61 -23.20 -17.05 -42.04 -0.24 -81.52 -54.22 -8.93 0.36 -45.63 -18.99 -35.29 -14.39 -57.92 -29.57
2015 -68.63 -36.41 -56.75 -31.75 -21.64 -15.02 -41.94 -0.14 -68.32 -41.80 -9.65 0.21 -38.79 -12.94 -36.64 -15.32 -60.67 -31.51
2016 -66.38 -36.27 -54.96 -27.90 -22.08 -18.54 -42.06 -0.26 -68.60 -46.30 -12.58 -1.60 -41.42 -13.22 -37.56 -19.39 -61.44 -34.65
2017 -66.73 -38.19 -53.42 -23.98 -23.87 -22.63 -34.38 7.42 -68.84 -49.15 -14.41 -3.40 -42.73 -14.53 -37.82 -21.94 -59.67 -35.20
2018 -66.26 -39.11 -53.02 -23.02 -34.37 7.43 -72.40 -55.21 -14.56 -3.04 -42.05 -13.85 -9.92 4.12 -59.50 -36.81

Mortality rate (all causes)
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

2007 -0.54 2.26 -2.55 4.17 -1.69 -0.29 -6.63 0.17 -4.39 -0.59 -3.92 2.28 -3.01 5.19
2008 -2.28 0.52 -1.79 5.01 -1.78 -0.38 -6.54 0.26 -1.11 2.27 -2.02 4.18 -2.45 5.75
2009 1.77 4.57 -1.19 5.09 -0.85 0.55 -4.44 2.36 -3.22 1.19 0.61 6.81 -1.18 7.02
2010 1.59 4.39 -2.42 2.78 -1.32 5.48 -0.15 1.25 -5.12 1.68 -1.87 2.40 -2.94 1.06 -2.35 3.85 -3.39 4.81
2011 1.25 3.01 -3.58 1.62 1.29 3.34 1.54 2.94 -3.24 3.56 3.92 5.21 -2.14 1.86 -2.21 4.47 0.18 4.96 -0.29 4.30
2012 -0.84 2.66 2.40 3.80 -5.28 1.52 -1.58 2.42 0.65 3.91 4.06 4.86 3.34 4.49
2013 2.52 2.87 -3.78 0.95 0.31 1.71 -2.16 4.64 -0.48 3.52 -2.95 1.54 1.21 4.04 -2.01 0.39
2014 0.56 2.02 -1.99 2.64 -1.22 0.18 -5.96 0.84 2.47 2.77 0.52 4.52 -1.64 2.75 1.83 4.23 -1.70 0.59
2015 -4.80 2.00 1.75 5.75
2016 -1.56 -0.16 -6.21 0.59 0.82 4.82
2017 -2.74 4.06 2.56 6.56
2018 0.61 7.41 5.05 9.05

% patients (aged 65+) w/ hip fracture operated on ≤ 48 hrs
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

2007 -2.77 2.51 -3.30 0.70 1.18 4.10 -9.11 4.06 -11.57 3.83 1.48 10.04 -2.18 1.04
2008 -1.69 2.00 -3.23 -0.42 3.93 5.92 -11.75 -4.07 -7.24 8.16 1.06 8.55 -1.09 0.38
2009 -5.59 -1.59 5.44 7.95 -4.37 -2.78 -10.05 4.95 -4.69 5.89 -3.12 0.28
2010 -6.22 -1.95 -4.88 -0.88 10.20 14.20 -9.61 3.88 0.45 2.98 -6.10 5.21 -3.94 -0.54
2011 -5.53 -1.52 -4.44 -0.44 14.41 18.41 -12.52 2.11 3.41 7.68 -2.76 9.15 4.08 7.48
2012 20.05 22.79 -21.05 -14.62 -5.83 5.88
2013 -0.13 0.66
2014 8.40 9.37
2015
2016
2017
2018

Table C3: Bounds on treatment effect based on (δT,p75 , δSC,p75 )

Abruzzo Calabria Campania Lazio Liguria Molise Piemonte Puglia Sardegna Sicilia

Mortality rate from ischaemic heart diseases
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

2007 -0.74 0.26 -0.57 0.43 -0.62 -0.02 -1.23 -0.23 -0.52 1.28 -0.10 0.10 -0.15 0.65
2008 -0.31 0.69 -0.31 0.69 -0.35 0.25 -0.39 0.61 1.02 2.82 0.19 0.39 0.08 0.88
2009 0.88 1.88 0.51 1.42 -0.72 -0.12 -0.18 0.82 -1.05 0.74 0.82 1.25
2010 0.50 1.50 -1.12 0.01 0.21 1.21 -0.20 0.40 0.20 1.20 0.32 2.12 0.06 0.86
2011 1.02 2.02 -0.32 0.32 0.20 1.03 0.37 0.97 1.05 2.05 1.72 3.52 0.37 0.40 0.23 0.88 0.54 0.74 0.09 0.89
2012 1.04 1.99 -0.36 0.24 1.91 2.91 0.10 1.90 -0.52 -0.32
2013 1.49 2.49 -0.64 -0.54 -0.10 0.19 -0.16 0.44 1.72 2.72 1.11 2.91 0.03 0.21 -0.75 0.03
2014 1.93 2.64 0.08 0.93 -0.31 0.69 -0.36 -0.00 1.63 1.91 2.66 4.40 -0.04 0.93 -0.42 0.38
2015 2.50 3.50 0.07 0.37 0.86 1.35 -0.26 0.34 0.79 1.70 3.38 5.18 0.77 1.19 -0.53 0.27
2016 1.96 2.75 -0.73 -0.43 -0.40 0.09 0.06 1.70 -0.50 0.06 -1.35 -0.55
2017 1.91 2.77 0.22 0.24 -0.33 -0.12 -0.38 -0.25 1.89 3.69 0.33 0.58 -1.17 -0.37
2018 -0.62 0.45 -0.34 0.66 0.00 0.92 -0.26 -0.18
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