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1. Introduction  
 

Climate change is increasingly perceived not only as an environmental issue, but also as a much 

broader challenge to development and its sustainability. Its impacts affect the social, the economic 

and the institutional dimensions. Furthermore, these impacts are inextricably intertwined with the 

major challenges modern societies have to face, such as increasing human pressure on water, food, 

energy, biodiversity resources, inequality and poverty, which are often reciprocally hampering their 

negative effects ((IPCC 2022), (WEF 2022)). 

 

Against this background, the social economic assessment of climate change impacts is a fundamental 

step to plan efficient, effective, and equitable response strategies. An extended literature reports 

challenges, methods, results, and developments of this almost 40-year-old prolific research stream (a 

very partial example list includes Stern (2006) the contributions of the Working Group II to the IPCC 

Assessment reports such as Arent et al. (2015), (IPCC 2022), many surveys like (Carleton and Hsiang 

2016), Howard and Sterner (2017), Tol (2018), Bosello and Parrado (2020) and more. Within the 

many different impact assessment efforts and methodologies, the definition and quantification of 

“climate change risk” is central.  

 

In its attempt to clarify this possibly elusive and multifaceted concept, the IPCC (Reisinger et al. 

2020b) defines it as a combination of hazard, exposure and vulnerability as illustrated in Figure 1.  

 
Figure 1 Climate risk definition. Source: (IPCC, 2014), p. 3 
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The vulnerability component comprises sensitivity, adaptive capacity and “other components”.  

This definition and the process leading to it has been debated at length (see e.g. Brooks et al. (2005), 

Connelly et al. (2018)). In a nutshell, the main issues concerned the adherence of these concepts to a 

“standard” probabilistic definition of risk and to the appropriateness of using the “risk” term itself. 

 

An extensive discussion is beyond the scope of this work. Nonetheless, we note with Connelly et al. 

(2018) that the “framing” is important especially when policy action has to be designed as responses 

to risk are unavoidably influenced by how risk is conceptualized. Reconducting the IPCC risk 

framework to a probabilistic perspective consisting in an “outcome” (usually negative) times a 

probability is however possible. In a loose sense, exposure and vulnerability are both contributing to 

determining the (negative) consequences while the “hazard” component could be associated with a 

probability. But here the second issue emerges. In rigorous terms, “risk” presupposes the knowledge 

of probability distributions or, following Kaplan and Garrick (1981), of the likelihood of the hazard 

to happen. In fact, this is not exactly the case in most hazard assessments. A more correct wording, 

in this context, would be “uncertainty” rather than “risk”. This is somehow recognized by the IPCC 

that states: “. Hazards, exposure and vulnerability may each be subject to uncertainty in terms of 

magnitude and likelihood of occurrence” (Reisinger et al. 2020a). 

 

This said, and adhering to the IPCC framework, different “types” of risks can originate from climate 

change. A common taxonomy lists two broad categories: physical risk and transition risk ((TCFD 

2017), (Reisinger et al. 2020b)). Physical risk relates to a climate change-driven change in the hazard 

- exposure - vulnerability system; transitional risk is instead “policy driven” and associated with the 

transition to a low carbon economy. Each of these macro-categories then feature many sub-categories. 

Physical risk can be for instance classified into acute or chronic risk, transition risk into policy or 

legal risk, technology risk, reputational risk etc. The relevance of climate change physical risk as a 

component of country risk with implication for fiscal stability and sovereign creditworthiness, is 

attracting increasing attention. 

 

In a seminal work, S&P Global Rankings (2014) identifies an inverse relation between a composite 

climate vulnerability index measured by the share of population living in coastal areas below five 

meters, the share of agriculture in national GDP and the vulnerability index provided by Notre Dame 

University Global Adaptation Index (ND-GAIN) and prosperity. It further shows that lower rate 

sovereigns are more vulnerable to climate change. Similarly, Moody’s (2016) combined the ND-

GAIN vulnerability indices, with a number of indicators used in its sovereign bond methodology.  
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These include: the scale of the economy (as measured by nominal GDP), national income (GDP per 

capita), and the assessment of Fiscal Strength (defined as the “overall health of government finances 

and the capacity to absorb financial costs arising from economic and social disruptive events”, 

(Moody’s Investors Service 2016), p. 7). In Moody’s (2016), sovereigns' ratings turned out to be quite 

strongly correlated with their susceptibility to climate change; moreover, in such framework countries 

with an overarching reliance on agriculture and countries where the quality of infrastructure is 

typically weaker – two important aspects of susceptibility (sensitivity using IPCC terminology) to 

physical climate change – tend to be lower rated. 

 

Volz et al. (2020) estimate econometrically a positive relationship between sovereign bond yields of 

forty developed and emerging economies and climate risk vulnerability measured by a refined version 

of the ND-GAIN index developed by (Kling et al. 2021). The study also highlights that the economies 

that have in place measures enabling an effective contrast to the negative effects of climate change 

tend to have lower sovereign bond yields. 

 

(Klusak et al. 2021) developed a machine learning application to simulate the effect of climate change 

on sovereign creditworthiness. They find material impacts of climate change as early as 2030, with 

significantly deeper downgrades across more sovereigns that, under the high climate signal RCP 8.5 

scenario, could reach an average 2.48 notches, with several countries falling by five notches or more 

on a 20-notch scale. The additional costs to sovereigns within the analyzed sample range from US$ 

22 to 33 billion under RCP 2.6, and US$ 137 to 205 billion under RCP 8.5.  

 

The inclusion of a climate change “physical dimension” appears to be a standard practice in the 

country rating process of rating agencies. Moody’s, Standard and Poor, Fitch explicitly recognise 

climate change as a sovereign risk trend. But, how this is achieved in practice is not necessarily 

transparent. Climate or climate-related stressors enter as part of the “environmental, social and 

governance” (ESG) risk. These are a set of indicators used to refine the “core” rating procedure 

through an external qualitative (read: analyst driven opinion) rather than a quantitative process.1 

Moreover, it is not always clear which climate change indicators are used to identify physical risk. 

Standard & Poor report a generic “natural conditions factors e.g., weather events” (S&P Global 

Ratings, 2018), Fitch, mentions “natural disasters and climate change” (Fitch Ratings 2019), p. 12, 

 
1 This is more evident in the Moody’s and S&P methodologies, but it also applies to Fitch that corrects the results from 

the econometric model with the qualitative overlay. 
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Moody’s reports: “Current and future effects of climate change” and “Exposure to heat stress, water 

stress, floods, hurricanes, sea level rise and wildfires” (Moody’s Investors Service 2020), p.13. 

 

Against this background, the aim of this work is to propose a country climate risk index rigorously 

rooted on the IPCC risk definition following a process which is transparent, replicable, and grounded 

on quantitative information. The country ranking obtained, is then commented in the light of the 

conceptual underpinnings motivating the different methodological steps followed and compared with 

the more common indexes used in the literature. We anticipate that the country ranking originated by 

climate-change risk is quite different from the country ranking that can be originated considering only 

“vulnerability” to climate-change. Trivial this may seem, we also show that a measure of climate 

vulnerability is much closer to what current indexes are proposing. But, in doing so, we claim that 

they also convey just partial and potentially misleading information. 

 

In what follows: section 2 describes the structure of the climate risk index and its components; section 

3 reports the computation process, while section 4 describes the data sources. Section 5 describes the 

results; section 6 offers a discussion and comparison with other indexes; section 7 concludes. 

2. Materials and methods 
 

Following the IPCC definition of climate risk our index evaluates the three climate risk dimensions 

of hazard, exposure, and vulnerability, in its turn divided into sensitivity and adaptive capacity. These 

four components are evaluated across five different types of climate risks arising from changes in 1) 

mean temperature; 2) extreme temperature; 3) water availability; 4) (coastal and river) floods 5) 

malaria suitability. These components have been chosen as they are often indicated by the literature 

as major conveyors of climate change impacts. Each risk type and dimension are measured by one or 

more indicators that are normalized, weighted and aggregated into a summarizing risk index measure 

(see section 3).  

 

The indicators used to measure each risk type along its several dimensions were initially selected by 

means of expert judgment and evidence from the literature, to be then refined according to data 

availability and access. 

 

The overall final index structure is reported in Table 1. The definition, motivation for the inclusion 

and source of each single indicator are extensively reported in Appendix 1.  
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Aggregate 
Individual climate-risk 

category 
Risk dimension (Composite) Indicator 

Aggregate Climate  

Risk 

Mean 

Temperature 

Risk 

Hazard Changes in mean temperature 
Exposure Total population 

Sensitivity 

Biodiversity loss 

Percentage urban population 

Population growth 

Income inequality (Gini Index) 

Adaptive Capacity 

Quality of institutions 

Education 

GDP per capita 

Access to basic services 

Extreme 

Temperature 

Risk 

Hazard Changes in heat waves 

Exposure Urban population 

Sensitivity 

Share of population below 14 

Share of population above 65 

Percentage urban population 

Population growth 

Income inequality (Gini Index) 

Adaptive Capacity 

Quality of institutions 

Education 

GDP per capita 

Access to basic services 

Water 

Scarcity 

Risk 

Hazard Changes in number of droughts 

Exposure 
Total population 

Agricultural value added 

Sensitivity 

Share of population below 14 

Share of population above 65 

Percentage urban population 

Agricultural value added as % of GDP 

Population growth 

Income inequality (Gini Index) 

Adaptive Capacity 

Quality of institutions 

Education 

GDP per capita 

Access to basic services 

Flood 

Risk 

Hazard Change in the number of floods 

Exposure 
Population living in LECZ 

Population living in floodplains 

Sensitivity 

Share of population living in LECZ 

Share of population living in floodplains 

Population growth 

Income inequality (Gini Index) 

Adaptive Capacity 

Quality of institutions 

Education 

GDP per capita 

Access to basic services 

Health 

Risk 

Hazard Changes in malaria suitability 

Exposure Total population 

Sensitivity 

Percentage urban population 

Population growth 

Income inequality (Gini Index) 

Adaptive Capacity 

Quality of institutions 

Education 

GDP per capita 

Access to basic services 
Table 1 Structure of the composite climate risk index. Source: Own illustration. 



 

7 
 

At the “bottom level”, “Biodiversity loss”, “Quality of Institution” and “Access to Basic Services” 

are on their turn composite indicators whose components are shown in Table 2. 

  

Composite Indicator Indicator 

Biodiversity Loss 

Threatened plant species 

Threatened mammal species 

Threatened bird species 

Threatened fish species 

Quality of Institutions 

Government effectiveness 

Control of corruption 

Political Stability and Absence of Violence/Terrorism 

Regulatory quality 

Rule of Law 

Voice and Accountability 

Access to Basic Services 

Percentage population access to at least basic water services 

Percentage population access to electricity 

Percentage of population using the Internet  

Mobile cellular subscriptions per 100 people 
Table 2: Composite indicators and the corresponding individual indicators. Source: Own illustration. 

 

2.1. Computation 

 

2.1.1. Normalisation 

 

After indicators’ have been selected, the first necessary step is their normalisation. This allows a 

homogeneous comparison across variables presenting different units of measurement. The 

normalisation procedure used is the “simpler” rang approach described below. 

 

• Arrange the 𝑚 alternatives into an evaluation vector 𝑥 in a 𝑚-dimensional column vector 

with a typical element 𝑥𝑖, 𝑖 = 1, … , 𝑚: 

(𝑥1  … 𝑥𝑚 ) 

• Determine the minimum 𝑥𝑚𝑖𝑛 and the maximum 𝑥𝑚𝑎𝑥. 

• Normalize the 𝑚 values in the evaluation vector 𝑥 according to: 

 

𝑥𝑖
∗ =  

𝑥𝑖− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
     (1) 

 Then the 𝑚 alternatives can be homogeneously compared according to 𝑥𝑖
∗. 

 

2.1.2. Weighting and aggregation 

 

https://info.worldbank.org/governance/wgi/Home/downLoadFile?fileName=pv.pdf
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After the normalisation, a key decision to be taken is determining how the different indicators 

composing the index are aggregated along its “nodes” or upper-level components. This process is 

strictly related to the weight that must be assigned to each of the components. The weighting and 

aggregation procedures define together the “properties” of the risk index or, put differently, reflect 

that specific set of preferences that will guide the evaluation by the Users. 

 

To start from a “most standard case” we assign to the 𝑛 criteria (indicators) equal weights2. 

Then, looking at the structure of the risk index from Table 1, four different aggregation steps can be 

identified: 

The first step computes the three composite components: “Biodiversity loss”, “Quality of 

Institutions” and “Access to basic services”. These composite indicators have been obtained with 

simple averaging of the normalised component indicators.  

 

The second step computes the “Hazard”, “Exposure”, “Sensitivity” and “Adaptive Capacity” 

dimensions of each of the five climate risk types. These composite components are also obtained by 

simple averaging. 

 

Simple averaging has been chosen in these first two aggregation steps as we, subjectively, decided, 

after the application of equal weighting, to keep on using a rather neutral perspective in getting to the 

four components of climate risk types.      

The third step computes the five climate risk dimensions (mean temperature risk, extreme temperature 

risk, water scarcity risk, flood risk, health risk) aggregating “Hazard”, “Exposure”, “Sensitivity” and 

“Adaptive Capacity”. In this case, rather than simple averaging, we use the following formula: 

 

𝑅𝑖 = √𝐻𝑎𝑧𝑎𝑟𝑑𝑖 ∙ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖  ∙
1

(1+𝑘)
∙

(1+𝑘∙𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖)

(1+𝑘∙𝐴𝑑𝑎𝑝𝑡.𝐶𝑎𝑝 𝑖)
        (2) 

 

This specification introduces a multiplicative relation between the Hazard, Exposure, and the joint 

Sensitivity and Adaptive Capacity constituents of Vulnerability. 

 

The multiplicative relation in (2) reflects the principle that if one component of risk is null, the risk, 

as a whole, is null. This principle is partly loosened in the treatment of vulnerability. This component 

 
2 This subjective choice can be easily modified. 
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depends positively on sensitivity and negatively on adaptive capacity. Its effect on risk is however 

also governed by the parameter K. For instance, a value of K equal to zero would mean that 

vulnerability (sensitivity and adaptive capacity) is uninfluential on risk. This parameter has been 

introduced given the difficulty to objectively quantify the role of vulnerability, and thus to give the 

possibility to the User of the index to assign a value responding to her subjective 

preferences/knowledge. In the current exercise, after internal scrutiny within the experts on climate 

change risk assessment at CMCC, a quite conservative or prudential attitude towards adaptive 

capacity emerged. Specifically, assuming the maximum possible normalised adaptive capacity (i.e. a 

value of 1) and the minimum possible normalised sensitivity (i.e. a value of 0), the idea was that 

roughly 60% of the combined effect of exposure and hazard still remains. This would correspond to 

a value of K of 0.25, that we used as our “reference”. Anyway, sensitivity analyses for different values 

of K are performed and the results reported in the appendix (see Appendix VI). The square root is 

introduced to grant the “idempotency” of the aggregation. 

 

The fourth step aggregates into the global risk index the five climate risk types (mean temperature 

risk, extreme temperature risk, water scarcity risk, flood risk, health risk). This is done by applying 

the Ordered Weighted Averaging (OWA) methodology (see Appendix II). This procedure allows 

treating the complex evaluation that may arise in risk assessment, with more flexibility than under 

simple averaging. A typical case to judge could be the following: is a “context” (that in our case is a 

country or region) riskier/more at risk when only one risk type materialises, as opposed to when more 

(say three) risk types occur, all however with lower “intensity” than the risk in the first “context”? If 

the answer (for whatever reason) is YES, an averaging procedure may still attach higher values to the 

second rather than to the first case, failing to capture, for instance, that the User of the information, 

say a decision maker, is more oriented towards the maximum observed value of risk regardless of all 

the others.  

 

An OWA method, of which simple averaging is a special case, can accommodate different 

aggregation preferences or strategies by the User of the system without prejudice to the obvious 

rationality properties, such as monotonicity and boundary conditions3. Therefore, in this work we 

developed an algorithm capable of representing different preference structures as function of a 

 
3 Resolving this issue more objectively, through quantification, is possible in principle, but would require an enormous 

amount of data in practice such as the calculation of the percentage of the population subject to the different types of 

hazards considered in isolation and in combination as well as the probabilities of such events. 
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parameter (𝛼). A value of zero for the parameter (𝛼) would mean that the decision-maker attaches 

importance to only the highest risk and disregards the rest, while a value of one would mean the 

decision-maker attaches equal importance to all risks. Then we conducted appropriate sensitivity 

analyses to evaluate the robustness of the ranking we obtained. 

 

2.2. Data 
 

The index compares 145 countries depicted and listed in Appendix III. Some countries could not be 

taken into account due to an excess of missing data (e.g. Congo, Egypt, Somalia, Iran). 

The description of the indicators, the rationales for their inclusion and the information sources are 

reported in Appendix I. Overall, we retrieved social economic data from: (World Bank Open Data 

2022), (Worldwide Governance Indicators 2022), (World Development Indicators: Sustainable 

Development Goals 2022). Income inequality data were obtained from the World Income Inequality 

Database (WIID 2022), while those on literacy rates were sourced from Our World in Data (Our 

World in Data 2022).The temperature and precipitation data were sourced from the ERA5 of the 

ECMWF, the European Centre for Medium-Range Weather Forecasts (European Centre for Medium-

Range Weather Forecasts (ECMWF) 2022). The flood data were retrieved from the Emergency 

Events Database (EM-DAT 2022), while the data on malaria suitability were obtained from LANCET 

Countdown (Lancet Countdown 2022). The population numbers in flood plains and LECZ were 

obtained from NASA estimates (NASA 2022).  

The indicators reported are an average of the time series for the years between 2000 and 2020 to 

capture climate risk under “today’s climate conditions”. Climate is indeed characterised over long 

(usually 20 or 30-years) time periods. This also helped us to address the issue of individual missing 

values that would have been much more problematic had we used just the last known value for an 

indicator.  

3. Results and Discussion 
 

3.1. Aggregate climate-change risk ranking. 

 

In the climate risk ranking (also referred to as “aggregate risk ranking”) countries with large 

populations tend to rank high. The opposite occurs with small countries (Figure 2). Accordingly, 

China and India lead the climate risk ranking followed by Indonesia, Pakistan, Vietnam, Bangladesh, 
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and the Philippines. Conversely, Vanuatu consistently ranks among the least-at-risk countries, 

together with small island states such as Sao Tome and Principe. Also European countries with a 

small population, such as Iceland and Luxembourg, tend to rank below average in terms of climate 

risk.  

 

In essence, our index emphasises a dominance of the exposure component of risk over all the other 

components, in particular adaptive capacity which is part of vulnerability. Evidence of this dominance 

is provided by Figure 3 illustrating the relative contributions of Hazard, Exposure and Vulnerability 

to total climate risk. Exposure, in turn, is strongly driven by the population at risk that increases with 

the country population4.  

 

Eventually, in all the five different risk types, and, accordingly, also in the total climate change risk, 

the more populated a country is, the more exposed it is, and the riskier it gets. This is also a 

consequence of treating the different hazards equally. For instance, we assume that a person 

potentially hit by increases in average temperatures equals one hit by a flood event. This explains 

why, for instance, the United States or “more populated” developed countries like Italy or Germany 

rank rather high in risk and higher than less populated developing countries.  

 

One could expect that by increasing k, and thus the importance of vulnerability, the picture may 

change. This is only partially true. Indeed, this ranking proves to be quite robust in the top and 

especially bottom ten positions that remain essentially the same for all values of the parameter 𝑘 and 

also of the OWA weights (the αs) (Figure 4).  

 

The sensitivity, both to the different values of ks or the OWA weight, increases moving to the central 

ranking positions, featuring countries with “medium-size” populations as well. When exposure (with 

population) decreases, the role of other risk components, and of k, increases. Examples in this 

direction are given by the wider variability exhibited by the Russian Federation, Mexico, Japan and 

Ethiopia. Still, there is not a clear distinction across developed and developing countries that are quite 

mixed. For instance, the United Kingdom, France, Spain and Ukraine, Colombia and Argentina, 

Myanmar, Thailand, Malaysia, Saudi Arabia and Afghanistan, Uganda, Kenya, Algeria, Morocco, 

Haiti all get an above average climate risk score.  

 
4 Indeed (see Table 1) in the case of mean temperature risk, water scarcity risk, malaria risk, the exposed population 

coincides with the total country population. In the case of extreme temperature risk, it is the urban population, yet larger 

in more populated countries. In the case of flood risk, it is the total population living in low elevation areas, still larger in 

larger countries. 
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To observe small island states and more in general developing countries on the top of the aggregate 

risk ranking, it is necessary to consider the Hazard or the Vulnerability components alone. This 

especially when the OWA weight would reflect a “pessimistic” attitude of the decision maker, i.e., 

she cares particularly (only) about the worst possible case (Appendix VI, Figure 20 and Figure 21-

24). 

 

Figure 5 depicts the contributions of the five individual risk types to the total risk. Notwithstanding 

some differences across countries, and a somehow balanced role of the different components, health 

risk and mean temperature risk play, on average, a larger role. This trend is robust under a sensitivity 

analysis across the different values of k.  

This is also reflected in the correlation of the total climate risk scores with its individual components. 

We find higher correlation with health, mean temperature and flood risk, and a slightly lower one 

with water scarcity and extreme temperature risk (Table 3). 

 

 Individual Climate Risk Types 

 Mean Extreme Water Flood Health 

Climate risk 0.74 0.62 0.65 0.72 0.78 

Table 3. Correlation between total climate change risk and individual climate risk type (k = 0.25, and equal weight assigned to the 

different risk types). Source: Own illustration. 

The individual climate risk types are, in most cases, only mildly positively correlated with each other, 

but, again, due to the role of exposure/population, as expected, higher correlation is identifiable across 

mean temperature, health and water scarcity risk (Table 4). 

 

 Mean Extreme Water Flood Health 

Mean temperature risk 1 0.33 0.40 0.26 0.69 

Extreme temperature risk 0.33 1 0.26 0.37 0.25 

Water scarcity risk 0.40 0.26 1 0.26 0.46 

Flood risk 0.27 0.37 0.26 1 0.43 

Health risk 0.69 0.25 0.46 0.43 1 

Table 4. Correlation matrix for the individual climate risks types (k = 0.25). Source: Own illustration. 
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Figure 2 Country ranking according to total climate change risk. Countries are ordered by the median ranking. Variability bars 

arises from the different values of k and the valuation strategies of the Decision Maker expressed via the OWA weights. 

Source: Own illustration.  
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Figure 3. Contribution of Hazard, Exposure and Vulnerability to total climate change risk index (k = 0.25, α=1equal weighting of 

individual risk types). The relative contributions have been obtained by adding up the component scores of each individual risk type 

and putting them in a relation to the total sum.  

Source: Own illustration.  
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Figure 4. Total rankings for different values of the parameter k (from left to right: k = 0, k = 0.25, k = 0.41, k = 0.82, k = 2.16). 

The variation in the rankings arises from the valuation strategies of the Decision Maker. The countries are ordered by the median 

ranking of a country for k = 0.25 over all valuation strategies of the Decision Maker. 

Source: Own illustration.  
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Figure 5 Contributions of individual risks to total risk under equal valuation for k = 0.25. 

Source: Own illustration.  
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3.2. Individual climate-change risk component ranking 

 

Mean temperature risk. (Scores for different values of 𝑘 are depicted in Appendix IV Figure 7). 

What we already noted for the total climate change risk index, is replicated here. Countries with larger 

population, and thus larger exposure, still tend to rank high in mean temperature risk. Accordingly, 

in the top positions we find “hot and populated” countries like China, Sudan, Pakistan, Afghanistan, 

India, and Bangladesh. African countries are also well represented among the riskier: Sudan, Niger, 

Uganda, Chad, Nigeria, Burkina Faso, Mali. Some traditionally considered “cold countries” like 

Norway, Finland, Sweden, the Russian Federation, but also UK or Germany rank anyway in a middle 

risk position and higher than hotter countries. Although against intuition at the first sight, (and 

keeping in mind the role of the exposure component), it is important to recall that the mean 

temperature hazard is driven by temperature deviations against own long-term mean. Accordingly, a 

cold country can highlight deviations comparable, or larger than, that of a warmer country. For the 

very same reasons, in the last positions of the mean temperature risk we find the highly expected 

Iceland together with less obvious small and warm island states.   

 

Extreme temperature risk (Scores for different values of 𝑘 are depicted in Appendix IV Figure 8). 

Extreme temperature risk also visually denotes a lower correlation with the total climate risk. The 

exposure dimension is also different as it is driven now by urban population and its age structure, 

rather than by total population. Furthermore, as for average temperature risk, the concept of “extreme” 

is defined as a deviation with respect to each country's “standard” characteristics. Therefore, also a 

cold country can exhibit a high extreme temperature hazard score if the temperature deviation is 

significant in relative terms although reaching “low” absolute levels. Accordingly, China is now in a 

rather central position. As one could expect, several hot Caribbean countries score high, but also 

Denmark, France, Belarus or the Russian Federation. Similarly, at the bottom of the rank, not only 

“cold” countries like Iceland, and Canada, can be found, but also many “hot” African countries like 

South Africa, Lesotho, Botswana, Zimbabwe, Zambia, Malawi, Burundi.  

 

Water scarcity risk. (Scores for different values of 𝑘 are depicted in Appendix IV, Figure 14). This 

risk category is also relatively less correlated with total climate risk. The top and bottom positions in 

the ranking follow somewhat more the intuition. Riskier are hot and dry countries in Africa especially 

if landlocked like Rwanda, Uganda, and Burundi, in the Middle East like Saudi Arabia, Oman, 

Lebanon, and the Syrian Arab Republic. Exposure is dominated by total population, and this also 
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tends to put quite high in the rankings China, India, Pakistan or the USA. North European and less 

populated countries tend to score low on water risk.  

 

Flood risk. (Scores for different values of 𝑘 are depicted in Appendix IV Figure 9). We recall that 

this risk encompasses both riverine and sea flood hazards. Also in this case the size matters. More 

extended and more populated coastal zones and larger river basins increase country exposure, which 

in the index appears to be only partially compensated by the sensitivity and adaptive capacity 

components. Accordingly, large countries, especially with long coast lines like India, China, 

Indonesia, but also Italy or Australia, rank  in the top positions, outperforming medium-small island 

states. Among these, the most at risk are Haiti and the Philippines. Vanuatu, Sao Tome, Fiji, Samoa, 

are in the middle risk position. Landlocked countries, consistently with intuition, tend to score low 

on flood risk. 

 

Health risk. (Scores for different values of 𝑘 are reported in Appendix IV Figure 11). The correlation 

between the total climate risk ranking of a country and the health climate risk scores clearly transpires 

from the overall monotonic appearance of the image. The highest variability in the mean temperature 

risk ranking is displayed by European, North American and African countries. Large countries tend 

to lead the ranking on health risk. India scores as the riskiest in the benchmark scenario, followed by 

the Philippines, Indonesia, China, Nigeria, Ethiopia, and Brazil. The USA ranks at place thirteen. 

Small countries are at the bottom of the ranking with Sao Tome and Principe and Jamaica sharing the 

last position. The least risky countries in terms of health risk are all small: Djibouti, Guyana, Bhutan, 

Samoa, Luxembourg, Comoros, Iceland, Vanuatu.  

 

Given the features of our methodological underpinnings, we partly expected the climate risk index to 

behave rather differently from the indexes of climate change risks currently available. The reasons 

for the discrepancy between the rankings obtained with the climate risk index and with those of the 

Notre Dame-GAIN index (ND-GAIN) the ESPON climate index (ESPON) and the Standard & Poor 

climate risk index (S&P Global Ratings 2014) are discussed in what follows. To ensure the 

comparability of the scores, the discussion is framed in terms of the ranking of countries, assigning 

the first place to the least risky and the last one to the riskiest one, running the ranking only for the 

countries covered by both the climate risk index proposed here and by the index it is compared to.  
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We remind the reader that ours is an attempt to translate the IPCC’s definition of climate risk into a 

viable climate risk index that can be computed based on well-established and publicly available 

datasets. Our index may diverge from the currently available one for the following reasons: 

● The climate risk index covers a different number of countries with respect to other indexes. 

● The climate risk index covers a different time span with respect to other indexes. 

● The climate risk index is computed based on a different set of factors than the ones used in 

the computation with respect to other indexes. 

These potential sources of divergence are discussed below: 

● Different number of countries. The coverage of world countries depends ultimately on the 

availability of data and on the geographical focus of the study. The climate risk index has a 

fairly comprehensive coverage (145 countries), two countries more than ND-GAIN. S&P 

covers 103 countries. ESPON index covers EU27 countries at the NUTS3 sub-national 

(usually provincial) level, thus national averages had to be computed; since the climate risk 

index does not cover Malta and Romania, 25 countries in total can be compared for this index.  

● Different temporal coverage. The climate risk index is computed for 2021, but it can be 

computed for previous years as well. S&P, published in 2014, was computed for 2012; 

ESPON yields the change in vulnerability from a reference time frame (1961-1990) compared 

to projections to the end of this century (2071-2100) as computed in 2011 using a specific 

modelling framework (COSMO-CLM (Rockel et al. 2008) for the IPCC AB1 scenario). The 

only index for which no temporal discrepancy is present is ND-GAIN. 

● Different “ingredients”. The choice of factors to be aggregated within the indexes and how 

is the major reason for their difference and similarities. The reader is referred to the 

methodological Section 3 for a detailed depiction of the approach. Here it suffices to recall 

that the approach applied here follows the definition of climate risk proposed by IPCC in 

AR5: it is the result of the combination of Hazards, Exposure, Sensitivity and Adaptive 

capacity. These factors are rarely all simultaneously present in the other indexes. 

The ND-GAIN index is primarily a vulnerability-based index, although it integrates to some extent 

adaptive capacity of countries through indicators aimed at capturing the “readiness to improve 

resilience”. The S&P index builds on ND-GAIN by adding two factors intended to capture exposure 

(namely, population living below five meters altitude in 2000 and agriculture’s share of GDP in 

2012). The ESPON index has a structure apparently akin to the climate risk index, in that it considers 

exposure, impacts and adaptability; however, it considers vulnerability as the result of the interaction 

of these factors (and of adaptation and mitigation measures) rather than one of the components of 



 

20 
 

climate risk at the same level of others; thus, the concepts of vulnerability and risk seem to largely 

overlap in the ESPON framework. 

In short, what seems to be more deeply integrated within our climate risk index, is the role of hazard 

and exposure. Exposure is by and large correlated with population, hence the world’s largest countries 

in terms of inhabitants, such as China and India, tend to be riskier in our approach than countries with 

a tiny population, including little island states which are often portrayed as the likely early victims of 

climate change. 

Indeed, looking at Figures 12, 13 and 14 in Appendix V it can be observed that the full version of the 

climate risk index provides very different rankings than the other indexes. However, once the 

components related to hazards and exposure are both switched off, the distance is strongly reduced- 

particularly in the case of the comparison with ND-GAIN, where the average absolute distance drops 

from 40 positions to only 13 (Figure 12). Lower reductions in average distance can be observed when 

one or the other class of factors is silenced, with stronger reductions in distance when exposure factors 

are silenced in the case of ND-GAIN (Figure 12) and S&P (Figure 13), while the effect is the same 

in the case of ESPON (Figure 14). 

Thus, our preliminary conclusion is that the currently available climate risk indexes are in fact more 

climate vulnerability (sensitivity and adaptive capacity) index and, as such, can give quite partial 

support to those Users (or applications) where the full climate risk dimension is to be considered.  

4. Conclusions  
 

This work starts from the attempt to apply rigorously the definition of climate change risk by the 

IPCC. We believe that, albeit unavoidably subjective, our choice of the single risk types and of the 

indicators substantiating the hazard, exposure, sensitivity, and adaptive capacity dimensions of 

climate risk, are quite standard. The weighting and aggregation approaches used, which are 

transparent and reproducible, have been tested with sensitivity analyses without substantive changes 

in the final results. All in all, the study shows that a full compliance with the climate change risk 

definition of the IPCC may easily lead to attribute a particular importance to the exposure component 

and to population as one of its main drivers.  

Countries with large populations such China, India, but also the US consistently obtain high risk 

rankings, while countries with small populations, score consistently low. This result partly contradicts 

the common notion that developing countries located at low latitudes, and small island states highly 

exposed to sea-level rise are extremely risky. 
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The reasons for these findings are many. Firstly, our risk index measures the hazards as experienced 

in the last 20 years. Therefore, the climate signal may still be relatively mild. Secondly, the hazard is 

represented by deviations against the country's own mean. Accordingly, a cold country can 

demonstrate a hazard comparable or larger than that of a hot country depending upon the relative 

deviations. Thirdly, we consider equally important the different hazards and exposures in the different 

countries. Fourthly, we assume that sensitivity and adaptive capacity have the same effect in size, 

although opposite in sign, in determining risk. The fact that in our “default” experiment we assume 

quite a pessimistic view on the ability of adaptive capacity to smooth damages plays a minor role as 

results are robust even when this assumption is dropped. 

The climate change risk concept endorsed by other exercises like those proposed by rating agencies, 

or the ND-GAINS tends to depict a more intuitive picture with high income countries ranking low in 

risk and low-income countries ranking high. We show that also our index can reasonably replicate 

this pattern if we just consider its vulnerability component. 

As a general conclusion, we hint that many of the currently available indexes are in fact vulnerability 

indexes mostly capturing sensitivity and adaptive capacity. This is fine, but this is not always clear 

and can induce misinterpretation as the addition of hazard and exposure can substantively change the 

picture. A direct consequence of this bias is to underestimate climate change risk and the potential 

benefits of climate policies in rich countries and consider climate change mostly an issue regarding 

the developing ones. Against this background, we provide a verifiable and replicable method to 

address climate change risk in its full determinants based on publicly available data and a transparent 

process.       
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Appendix I. Indicators’ description  
 

o Change in mean temperature 

Description: Change in mean annual temperature in the 2000-2020 period compared to long-term 

mean in the period 1970-2021. 

Climate risk: Mean temperature risk 

Risk dimension: Hazard 

Rationale: Deviation from the long-term mean annual temperature enables to detect possible signals 

of climate change. It is relevant since an increase of the mean temperature would eventually lead to 

a breakdown of critical ecosystem services. 

Calculation: First, a long term mean 
1

52
∑2021

𝑗=1970 𝑡𝑗  is calculated, which covers the period since the 

1970s. This long term mean is understood as the baseline. Second, the deviations from the baseline 

𝑡𝑖 − 
1

52
∑2021

𝑗=1970 𝑡𝑗  are calculated by subtracting the long term mean from the yearly mean 

temperature 𝑡𝑖 for (i = 2000, …, 2020). Third, the average deviation from the long-term mean by 

averaging among the deviations 𝑡𝑖 −  
1

52
∑2021

𝑗=1970 𝑡𝑗: 

1

21
∑

2020

𝑖 = 2000

(𝑡𝑖 −  
1

52
∑

2021

𝑗=1970

𝑡𝑗) 

Data Source: ERA-5 by ECMWF, the European Centre for Medium-Range Weather Forecasts. 

Coverage: Country-level; global 

Time series: 1970 - 2021 

 

o Changes in extreme temperature  

Description: Average yearly change in the Warm Spell Duration Index (WSDI) in the period 2000 -

2020 compared to the long-term mean in the period 1970-2021. 

Climate risk: Extreme temperature risk 

Risk dimension: Hazard 

Rationale: A heat wave indicator is included since heat waves pose a serious health issue, especially 

in urban spaces. Heat waves also exacerbate the issues related to drought and wildfires. 

Calculation: First, a long term mean 
1

52
∑2021

𝑗=1970 𝑊𝑆𝐷𝐼𝑗  is calculated, which covers the period since 

the 1970s. This long term mean is understood as the baseline. Second, the deviations from the baseline 

𝑊𝑆𝐷𝐼𝑖 −  
1

52
∑2021

𝑗=1970 𝑊𝑆𝐷𝐼𝑗 are calculated by subtracting the long term mean from the yearly 

mean temperature 𝑊𝑆𝐷𝐼𝑖 for (i = 2000, …, 2020). Third, the average deviation from the long-term 

mean by averaging among the deviations 𝑊𝑆𝐷𝐼𝑖 −  
1

52
∑2021

𝑗=1970 𝑊𝑆𝐷𝐼𝑗: 

 
1

21
∑2020

𝑖 = 2000 (𝑊𝑆𝐷𝐼𝑖 −  
1

52
∑2021

𝑗=1970 𝑊𝑆𝐷𝐼𝑗) 
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Data Source: ERA-5 by ECMWF, the European Centre for Medium-Range Weather Forecasts. 

Coverage: Country-level; global 

Time series: 1970 – 2021 in the period 1970-2021. 

 

o Changes in drought  

Description: Change in drought frequency compared to a long-term mean in the period 1970-2021.  

Climate risk: Water risk 

Risk dimension: Hazard 

Rationale: The three-month Standardized Precipitation Index (SPI) is a drought indicator. Droughts 

are relevant since they can result in shortage of drinking water or in quality changes of the available 

drinking water. Droughts could also affect food security by affecting crops and livestock. 

Calculation: First, a long term mean 
1

52
∑2021

𝑗=1970 𝑆𝑃𝐼𝑗  is calculated, which covers the period since 

the 1970s. This long term mean is understood as the baseline. Second, the deviations from the baseline 

𝑆𝑃𝐼𝑖 − 
1

52
∑2021

𝑗=1970 𝑆𝑃𝐼𝑗  are calculated by subtracting the long term mean from the yearly mean 

temperature 𝑆𝑃𝐼𝑖 for (i = 2000, …, 2020). Third, the average deviation from the long-term mean by 

averaging among the deviations 𝑆𝑃𝐼𝑖 −  
1

52
∑2021

𝑗=1970 𝑆𝑃𝐼𝑗: 

1

21
∑

2020

𝑖 = 2000

(𝑆𝑃𝐼𝑖 −  
1

52
∑

2021

𝑗=1970

𝑆𝑃𝐼𝑗) 

Data Source: ERA-5 by ECMWF, the European Centre for Medium-Range Weather Forecasts. 

Coverage: Country-level; global 

Time series: 1970 - 2021 

Notes: The three-month Standardized Precipitation Index (SPI) is based on the probability of 

precipitation for a three-monthly time scale and is based on the long-term precipitation mean in the 

period 1970-2021. 

 

o Changes in floods 

Description: Change in the number of riverine and coastal floods in a given year compared to a long-

term mean in the period 1970-2021. 

Climate risk: Flood risk 

Risk dimension: Hazard 

Rationale: This indicator allows us to control incidences of floods, which result in the loss of lives, 

property, crops, livestock, and infrastructure. Floods also tend to worsen health outcomes due to 

waterborne diseases.  

Calculation: First, a long term mean 
1

52
∑2021

𝑗=1970 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑗  is calculated, which covers the period 

since the 1970s. This long term mean is understood as the baseline. Second, the deviations from the 
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baseline 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑖 −  
1

52
∑2021

𝑗=1970 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑗 are calculated by subtracting the long term mean 

from the yearly mean temperature 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑖 for (i = 2000, …, 2020). Third, the average deviation 

from the long-term mean by averaging among the deviations 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑖 −  
1

52
∑2021

𝑗=1970 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑗  

: 

1

21
∑

2020

𝑖 = 2000

(𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑖 −  
1

52
∑

2021

𝑗=1970

𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑗) 

Data Source: Emergency Events Database (EM-DAT)  

Coverage:  Country-level; global 

Time series: 1970 - 2021 

 

o Changes in malaria suitability 

Description: Average change in the Lancet Countdown malaria indicator compared to a long-term 

mean in the period 1970-2021. 

Climate risk: Health risk 

Risk dimension: Hazard 

Rationale: This indicator captures the suitability for malaria, a vector-borne disease responsible for 

many fatalities. The disease is considered one of the most important infectious diseases.   

Calculation: First, a long term mean 
1

52
∑2021

𝑗=1970 𝑀𝑎𝑙𝑎𝑟𝑖𝑎𝑆𝑗 is calculated, which covers the period 

since the 1970s. This long term mean is understood as the baseline. Second, the deviations from the 

baseline 𝑀𝑎𝑙𝑎𝑟𝑖𝑎𝑆𝑖 −  
1

52
∑2021

𝑗=1970 𝑀𝑎𝑙𝑎𝑟𝑖𝑎𝑆𝑗 are calculated by subtracting the long term mean 

from the yearly mean temperature 𝑀𝑎𝑙𝑎𝑟𝑖𝑎𝑆𝑖 for (i = 2000, …, 2020). Third, the average deviation 

from the long-term mean by averaging among the deviations 𝑀𝑎𝑙𝑎𝑟𝑖𝑎𝑆𝑖 −  
1

52
∑2021

𝑗=1970 𝑀𝑎𝑙𝑎𝑟𝑖𝑎𝑆𝑗: 

1

21
∑

2020

𝑖 = 2000

(𝑀𝑎𝑙𝑎𝑟𝑖𝑎𝑆𝑖 −  
1

52
∑

2021

𝑗=1970

𝑀𝑎𝑙𝑎𝑟𝑖𝑎𝑆𝑗) 

Data Source: The Lancet Countdown 

Coverage:  Country-level; global 

Time series: 1970 - 2021 

Notes: The Lancet Countdown malaria indicator is a threshold-based model that tracks global changes 

in the climatic suitability for malaria. Climatic suitability is defined as a coincidence of precipitation 

accumulation above 80 mm, an average temperature of 18–32°C, and relative humidity greater than 

60%. 
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o Threatened mammal species 

Description: Threatened mammal species that are classified by the International Union for 

Conservation of Nature (IUCN) as endangered, vulnerable, rare, indeterminate, out of danger, or 

insufficiently known. 

Climate risk: Mean temperature risk 

Risk dimension: Sensitivity 

Composite indicator: Biodiversity loss 

Rationale: The number of threatened species is a proxy for biodiversity loss, which compromises 

ecosystem service provision and increases the sensitivity to climate-related risk.  

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 217 countries and territories 

Time series: Single observation (2019) 

Notes: Mammal species exclude whales and porpoises.  

 

o Threatened fish species 

Description: Threatened fish species that are classified by the International Union for Conservation 

of Nature (IUCN) as endangered, vulnerable, rare, indeterminate, out of danger, or insufficiently 

known. 

Climate risk: Mean temperature risk 

Risk dimension: Sensitivity 

Composite indicator: Biodiversity loss 

Rationale: The number of threatened species is a proxy for biodiversity loss, which compromises 

ecosystem service provision and increases the sensitivity to climate-related risk.  

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 217 countries and territories 

Time series: Single observation (2019) 

 

o Threatened bird species 

Description: Threatened bird species that are classified by the International Union for Conservation 

of Nature (IUCN) as endangered, vulnerable, rare, indeterminate, out of danger, or insufficiently 

known. 

Climate risk: Mean temperature risk 
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Risk dimension: Sensitivity 

Composite indicator: Biodiversity loss 

Rationale: The number of threatened species is a proxy for biodiversity loss, which compromises 

ecosystem service provision and increases the sensitivity to climate-related risk.  

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 217 countries and territories 

Time series: Single observation (2019) 

Notes: Birds are listed for every country within their breeding or wintering range. 

 

o Threatened higher plant species 

Description: Threatened plant species that are classified by the International Union for Conservation 

of Nature (IUCN) as endangered, vulnerable, rare, indeterminate, out of danger, or insufficiently 

known. 

Climate risk: Mean temperature risk 

Risk dimension: Sensitivity 

Composite indicator: Biodiversity loss 

Rationale: The number of threatened species is a proxy for biodiversity loss, which compromises 

ecosystem service provision and increases the sensitivity to climate-related risk.  

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 217 countries and territories 

Time series: Single observation (2019) 

Notes: The numbers refer to native vascular plant species. 

 

o Total population 

Description: Total population of a country.   

Climate risk: Mean temperature risk, Water risk, Health risk 

Risk dimension: Exposure 

Rationale: Higher mean temperatures have been shown to lead to an increase in suicide rates and to 

negatively affect mental health. Droughts lead to shortages of drinking water and food insecurity due 

to crop and livestock failures. Improved suitability for malaria propagation typically leads to more 

cases and more fatalities. Countries with larger populations are more exposed since there are more 

people to potentially suffer the consequences of mean temperature, water and health risk. 
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Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 218 countries and territories 

Time series: 1970 - 2021 

Notes: Total population numbers reflect midyear estimates of resident numbers regardless of the legal 

status or citizenship.  

 

o Percentage urban population 

Description: People living in urban areas as defined by national statistical offices as a percentage of 

total population. 

Climate risk: Extreme temperature risk 

Risk dimension: Sensitivity 

Rationale: Urban areas are warmer than their rural surroundings due to the urban heat island effect. 

This makes a country with a larger share of urban population more sensitive to extreme temperature 

risk since a larger percentage of the population potentially suffers the consequences of higher 

temperature. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 181 countries 

Time series: 1990 – 2019 

 

o Urban population 

Description: Total population in urban areas as defined by national statistical offices. 

Climate risk: Extreme temperature risk 

Risk dimension: Exposure 

Rationale: Urban areas are warmer than their rural surroundings due to the urban heat island effect. 

This makes a country with a larger urban population more exposed to extreme temperature risk since 

more people potentially suffer the consequences of higher temperature. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Calculated based on the percentage urban population and total population data. 

Data Source: World Bank 

Coverage: 181 countries 

Time series: 1990 – 2019 
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o Population growth 

Description: Annual population growth rate 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Sensitivity 

Rationale: High population growth rate implies a high strain on the natural resources and 

infrastructure, which leaves a country more sensitive to climate risks. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. The 

growth rate for year t is the exponential population growth rate from year t-1 to t, in percentage.  

Data Source: World Bank 

Coverage: 181 

Time series: 1990 - 2019 

Notes: Population numbers reflect the de facto residents regardless of legal status or citizenship. 

 

o Percentage population below 14 

Description: Residents 14 years of age or younger as a percentage of total population. 

Climate risk: Extreme temperature risk, Water risk 

Risk dimension: Sensitivity 

Rationale: Children are more susceptible to heat-related conditions than the general population. This 

renders countries with a higher percentage of them more sensitive to climate risks. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 175 countries 

Time series: 1990 - 2019 

Notes: Population numbers reflect the de facto residents regardless of legal status or citizenship. 

 

o Percentage population above 65 

Description: Residents 65 years of age or older as a percentage of total population  

Climate risk: Extreme temperature risk, Water risk 

Risk dimension: Sensitivity 

Rationale: Elderly people are more susceptible to heat-related conditions than the general population. 

This renders countries with a higher percentage of them more sensitive to climate risks. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 
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Data Source: World Bank 

Coverage: 175 countries 

Time series: 1990 - 2019 

Notes: Population numbers reflect the number of residents regardless of legal status or citizenship. 

 

o Population living in LECZ 

Description: Population living in low elevation and coastal zones (LECZ) 

Climate risk: Flood risk 

Risk dimension: Exposure 

Rationale: A larger population living in low elevation and coastal zones makes a country more 

exposed to flood risk, since this means more people potentially in harm's way.   

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: NASA 

Coverage: 221 countries and territories 

Time series: Single observation (2015) 

 

o Share of population living in LECZ 

Description: Population living in LECZ as a percentage of total population 

Climate risk: Flood risk 

Risk dimension: Sensitivity 

Rationale:  A larger share of the population living in LECZ makes a country more sensitive to flood 

risk. since this means a larger percentage of the population is potentially in harm's way.   

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: Calculated based on NASA and World bank data  

Coverage: 209 countries and territories 

Time series: Single observation (2015) 

 

o Population living in floodplains 

Description: Population living in floodplains 

Climate risk: Flood risk 

Risk dimension: Exposure 
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Rationale: A larger population living in floodplains makes a country more exposed to flood risk, since 

this means more people potentially in harm's way.  

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: NASA 

Coverage: 219 countries and territories 

Time series: Single observation (2015) 

 

o Share of population living in floodplains 

Description: Population living in floodplains as a percentage of total population 

Climate risk: Flood risk 

Risk dimension: Sensitivity 

Rationale: A larger share of the population living in floodplains makes a country more sensitive to 

flood risk, since this means a larger percentage of the population is potentially in harm's way.   

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: Calculated based on NASA and World Bank data   

Coverage: 207 countries and territories 

Time series: Single observation (2015) 

 

o GDP per capita 

Description: Gross Domestic Product (GDP) per capita 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Rationale: GDP per capita is a proxy for wealth. The wealthier a country is, the more resources can 

be potentially dedicated to the adaptation to climate risks. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 180 countries 

Time series: 1990 - 2019 

Notes: Gross Domestic Product is the sum of gross value added by all resident producers plus any 

product taxes, and minus any subsidies not included in the value of the products. GDP data in our 

index are in current US$. 
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o Income inequality (Gini index). 

Description: Measurement of the income inequality 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Sensitivity 

Rationale: More unequal societies have a higher share of people living in relative poverty with less 

resources to adapt to climate risks. This makes such countries more sensitive to climate risks.  

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Income Inequality Database 

Coverage: 155 countries 

Time series: 1990 - 2018 

 

o Agriculture, forestry, and fishing, value added (% of GDP) 

Description: Net output of the agriculture, forestry, and fishing sector as a percentage of GDP. 

Climate risk: Water risk 

Risk dimension: Sensitivity 

Rationale: Countries with a higher percentage of the agriculture, forestry and fishing value added in 

GDP are more sensitive to water risk, since the sectors are intricately intertwined with the water cycle. 

Droughts lead to failure in crops and livestock, they can exacerbate forest fires and cause water bodies 

to dry up.  

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 179 countries 

Time series: 1990 - 2019 

Notes: “Agriculture, forestry, and fishing corresponds to ISIC divisions 1-3 and includes forestry, 

hunting, and fishing, as well as cultivation of crops and livestock production. Value added is the net 

output of a sector after adding up all outputs and subtracting intermediate inputs. It is calculated 

without making deductions for depreciation of fabricated assets or depletion and degradation of 

natural resources. The origin of value added is determined by the International Standard Industrial 

Classification (ISIC), revision 4.” (World Bank Open Data, 2022) 

 

o Agriculture, forestry, and fishing, value added  

Description: Net output of the agriculture, forestry, and fishing sector. 

Climate risk: Water risk 

Risk dimension: Exposure 
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Rationale: High value added from agriculture, forestry and fishing value makes a country more 

exposed to water risk, since the sectors are intricately intertwined with the water cycle. Droughts lead 

to failure in crops and livestock, they can exacerbate forest fires and cause water bodies to dry up.  

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Calculated based on data on the agriculture value added as a percentage of GDP, total population and 

GDP per capita. 

Data Source: World Bank 

Coverage: 179 countries 

Time series: 1990 - 2019 

Notes: In current US$. 

 

o Education (literacy rates) 

Description: Share of the population older than 14 years that can read and write. 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Rationale: Higher percentage of literate people allow countries to better adapt to climate risks, since 

the population is better equipped to understand the complex circumstances related to climate change 

and how it affects socio-economic systems. More people have the opportunity to access services and 

information that allow them to adjust. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: Our World in Data  

Coverage: 156 countries 

Time series: Single observation (2015) 

Notes: The estimate by Our World in Data is based on several data sources. 

 

o Percentage population access to at least basic water services 

Description: People using at least basic water services as a percentage of the population. 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Access to basic services 

Rationale: Water is essential for human life. Countries with a lower share of the population with 

access to basic water services are less capable of adapting, since the livelihood of the people are 

compromised. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 
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Data Source: World Bank  

Coverage: 195 countries 

Time series: 1990 - 2019 

 

o Percentage population access to electricity 

Description: People with access to electricity as a percentage of the total population. 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Access to basic services 

Rationale: A higher percentage of the population with access to electricity implies more people that 

can potentially use air conditioning to cool their surroundings, pumps to raise water from greater 

depths and create vital infrastructure in response to natural disasters and disease outbreaks. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 181 countries 

Time series: 1990 - 2018 

 

o Individuals using the Internet (% of population) 

Description: Internet users as a percentage of the total population. 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Access to basic services 

Rationale: A higher percentage of the population with access to the Internet implies that more people 

have access to information on how to effectively adapt to climate risks. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 180 countries 

Time series: 1990 - 2019 

Notes: Internet users are people who have used the Internet in the last three months from any location 

and device. 
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o Mobile cellular subscriptions per 100 people 

Description: Subscriptions to a public mobile telephone service per 100 people. 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Access to basic services 

Rationale: A higher number of mobile cellular subscriptions per 100 people implies that more people 

have access to information on how to effectively adapt to climate risks. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Bank 

Coverage: 180 countries 

Time series: 1990 - 2019 

Notes: The data reflects subscriptions to a public mobile telephone service providing access to the 

PSTN using cellular technology. 

 

o Quality of institutions: Government effectiveness 

Description: “Government effectiveness captures perceptions of the quality of public services, the 

quality of the civil service and the degree of its independence from political pressures, the quality of 

policy formulation and implementation, and the credibility of the government's commitment to such 

policies.” (Worldwide Governance Indicators, 2022) 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Quality of Institutions 

Rationale: Countries with higher scores in government effectiveness can adapt to climate risks more 

easily due to the overall credibility of the government and the commitment to mitigation and 

adaptation goals. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Governance Indicator Project of the World Bank 

Coverage: 200 countries and territories 

Time series: 1996, 1998, 2000, 2002 - 2019 
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o Quality of institutions: Control of corruption 

Description: “Control of corruption captures perceptions of the extent to which public power is 

exercised for private gain, including both petty and grand forms of corruption, as well as "capture" of 

the state by elites and private interests.” (Worldwide Governance Indicators, 2022) 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Quality of Institutions 

Rationale: Countries with a better control of corruption can adapt to climate risk more easily, since 

public policy more reliably serves the long-term interest of all stakeholders in this case.  

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Governance Indicator Project of the World Bank 

Coverage: 200 countries and territories 

Time series: 1996, 1998, 2000, 2002 - 2019 

 

o Political Stability and Absence of Violence/Terrorism 

Description: “Political Stability and Absence of Violence/Terrorism measures perceptions of the 

likelihood of political instability and/or politically-motivated violence, including terrorism.” 

(Worldwide Governance Indicators, 2022) 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Quality of Institutions 

Rationale: Countries with more political stability and absence of violence and terrorism can adapt to 

climate risk more easily, since political stability implies consistency of policy and the absence of 

violence and terrorism implies that due attention is paid to environmental issues. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Governance Indicator Project of the World Bank 

Coverage: 200 countries and territories 

https://info.worldbank.org/governance/wgi/Home/downLoadFile?fileName=pv.pdf
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Time series: 1996, 1998, 2000, 2002 – 2019 

 

o Quality of institutions: Regulatory quality 

Description: “Regulatory quality captures perceptions of the ability of the government to formulate 

and implement sound policies and regulations that permit and promote private sector development”. 

(Worldwide Governance Indicators, 2022) 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Quality of Institutions 

Rationale: Countries with higher regulatory quality can adapt to climate risk more easily, since the 

regulators can more easily formulate and implement relevant and timely policies and regulations. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Governance Indicator Project of the World Bank 

Coverage: 200 countries and territories 

Time series: 1996, 1998, 2000, 2002 - 2019 

 

o Quality of institutions: Rule of law 

Description: “Rule of law captures perceptions of the extent to which agents have confidence in and 

abide by the rules of society, and in particular the quality of contract enforcement, property rights, 

the police, and the courts, as well as the likelihood of crime and violence.” (Worldwide Governance 

Indicators, 2022) 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Quality of Institutions 

Rationale: Countries with better rule of law can adapt to climate risk more easily, since it supports 

the efficient enforcement of mitigation and adaptation policies. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 
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Data Source: World Governance Indicator Project of the World Bank 

Coverage: 200 countries and territories 

Time series: 1996, 1998, 2000, 2002 - 2019 

 

o Quality of institutions: Voice and accountability 

Description: “Voice and accountability captures perceptions of the extent to which a country's citizens 

are able to participate in selecting their government, as well as freedom of expression, freedom of 

association, and a free media.” (Worldwide Governance Indicators, 2022) 

Climate risk: Mean temperature risk, Extreme temperature risk, Water risk, Flood risk, Health risk 

Risk dimension: Adaptive capacity 

Composite indicator: Quality of Institutions 

Rationale: Countries with higher scores in voice and accountability can adapt to climate risk more 

easily, since citizens can participate in selecting their government and thereby influence the 

legislation passed. 

Calculation: Average across all available observations for a sovereign between 2000 and 2020. 

Data Source: World Governance Indicator Project of the World Bank 

Coverage: 200 countries and territories 

Time series: 1996, 1998, 2000, 2002 – 2019 
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Appendix II: The OWA method 
 

The OWA method represents an alternative to Weighted Averaging (WA), and is commonly used in 

many environmental applications, see, among other ones ((Bordogna et al. 2011), (Gorsevski et al. 

2012), (Malczewski et al. 2003), (Zabihi et al. 2019)). In contrast with WA, where the weights are 

assigned to each criterion - the different risk type indicators in our case – in a cardinal fashion, the 

OWA method is a positional aggregation function. This means that the weights are assigned to the 

ordered criteria5. These operators thus combine values according to their ordering, i.e., by means of 

a set of ordinal weights, representing each the importance of the position of the criterion in the 

sampled data. For instance, once the (normalised) values of the criterion are ordered from the lowest 

to the highest, a system of OWA weight that assigns “one” to the first and “zero” to the others, will 

select the MIN operator. This means that the preference structure of the User of the information 

“cares” just about the lowest risk. Conversely, if all the OWA weights are null and the last equals 

one, the MAX of the normalised criteria will be selected. Clearly, in between these two extremes, 

there are infinite possibilities. For example, the simple averaging would correspond to equal OWA 

weights with value 1/n, if n is the number of the criteria.6 

 

A typical approach to define the OWA weights, is to use so-called Linguistic Quantifiers, that enable 

their easy interpretation in terms of the natural language concepts of “optimism/pessimism”, or 

“conjunction/disjunction” behaviour, of the decision maker (DM) (Yager 1996). 

 

More formally, a Linguistic Quantifier is a function that “filters” in a suitable fashion the number of 

criteria that satisfy a proposition of the natural language such as “most of”, “few”, “medium values”, 

etc. Usually, a Linguistic Quantifier can be represented by a monotonic increasing function 

𝑄: [0,1] → [0,1], dubbed Regular Increasing Monotone function, RIM for brevity, such that the i-th 

OWA weight, w, can be determined as follows: 

 
5 Even if OWA seems to be a linear operator (as the WA is), it is not, because it is linear with respect to the ordered 

values. This preliminary sorting operation causes the algorithm to be in fact non-linear. 

6 Note that OWA cannot implement Weighted Averaging with different weights, since the weights have only a positional 

meaning. In order to include some cardinal weights as well, another vector representing the “importance” degree of each 

criterion, some methods were proposed in the specialized literature, like WOWA (Torra 2011). 
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𝑤 = 𝑄 (
𝑖

𝑛
) − 𝑄 (

𝑖−1

𝑛
)        

with n the number of the criteria and i=1,.. n. 

 

A commonly used RIM quantifier is given by the following function Q(r): R+→R 

𝑄(𝑟) = 𝑟𝛼 

𝑟 is an arbitrary positive real number and 𝛼 ∈ [0, ∞) is a parameter to represent the so-called optimism 

degree (Yager, 1988). In this case:  
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In practice, the higher the weight assigned to a given position in the OWA weights vector, the higher 

importance the User assigns to the corresponding criteria and the lower to all the others. This 

eventually defines her “optimism” degree. For instance, recalling the example above mentioned with 

values of the criterion ordered from the lowest to the highest, the MIN operator, is obtained when 

𝛼 = 0, the MAX operator, when 𝛼 → ∞, while the simple average when 𝛼 = 1. 

 

The MAX operator corresponds to the case in which the User evaluates an item considering only the 

highest criterion; from a logical point of view, she/he is satisfied if “at least one” criterion is satisfied. 

This is an “optimistic” attitude reflecting what, using decision theory jargon, is a “disjunctive” 

behaviour or an “orness-type” DM. The other extreme, the MIN operator, corresponds to a 

“pessimistic” or conjunctive behaviour (aka “andness-type” DM), when the User evaluates an item 

considering only the worst criterion, thus he is satisfied if “all” the criteria are satisfied (Yager 1996)7. 

 
7 Contextualizing to our case where higher values correspond to higher risks, the MIN case is when the (DM) is optimistic, 

the MAX case when the DM is optimistic.  
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Once the different weights have been set (or to decide which weight configuration to set), it is possible 

to measure the degree of optimism (or pessimism), with an “orness index” defined as follows (Yager 

1988): 

𝑜𝑟𝑛𝑒𝑠𝑠(𝑤) =
1

𝑛 − 1
 ⋅ ∑

𝑛

𝑗=1

(𝑛 − 𝑖) ⋅ 𝑤𝑖 

It is a function of the weights vector 𝑤 and ranges between 0 (pessimistic case) and 1 (optimistic 

case). In the neutral case, the 𝑜𝑟𝑛𝑒𝑠𝑠 index equal 0.5. Values of 𝑜𝑟𝑛𝑒𝑠𝑠 in between 0 and 0.5 indicate 

a tendency towards pessimism, i.e., a disjunctive attitude of the User. This is the case when the User 

does not intend to emphasise only one (or few) criteria, but he is satisfied only if 𝑚𝑜𝑠𝑡 of the criteria 

will be satisfied. 

 

Finally, let us remark that each weight obtained by a RIM Linguistic Quantifier represents the 

increase of satisfaction reaching the i-th criteria compared to the previous (𝑖 − 1) criteria. Thus, the 

User can select the optimism degree. Subsequently, the OWA aggregator computes the scores for any 

item, thus permitting to obtain the ranking among all the considered items. Table1 reports the set of 

the OWA weights for 𝑛 = 5 and for seven different values of the parameter 𝛼 used in this exercise. 

The two extreme cases, MIN, and MAX, are the first and the last columns, corresponding to 𝛼 = 0 

and 𝛼 = 1 respectively. As suggested above, we consider only some values of the parameter 𝛼, but 

in the range of the disjunctive behaviour of the User: 𝛼 ∈ [0,1]. 

 

𝛼 0 0.1 0.3 0.5 0.7 0.9 1 

𝑤1 1 0.85 0.62 0.45 0.32 0.23 0.20 

𝑤2 0 0.06 0.14 0.19 0.20 0.20 0.20 

𝑤3 0 0.04 0.10 0.14 0.17 0.19 0.20 

𝑤4 0 0.03 0.08 0.12 0.16 0.19 0.20 

𝑤5 0 0.02 0.06 0.11 0.14 0.18 0.20 

Table 1. OWA weight for different values of 𝛼 parameters. Source: Own illustration. 

Note: 𝛼=0, the decision maker “cares” just about the highest possible risk (worst outcome); 𝛼=1, the decision maker 

gives equal importance to the different climate risk types. 
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Appendix III. Countries covered by the climate risk index 
 

Afghanistan. Albania, Algeria, Angola, Argentina, Armenia, Australia, Austria, Azerbaijan, 

Bangladesh, Belarus, Belgium, Benin, Bhutan, Bolivia, Botswana, Brazil, Bulgaria, Burkina Faso, 

Burundi, Cambodia, Cameroon Canada, Central African Republic, Chad, Chile, China, Colombia, 

Comoros, Costa Rica, Cote d'Ivoire, Croatia, Cuba, Cyprus, Czech Republic, Denmark, Djibouti, 

Dominican Republic, Ecuador, El Salvador, Estonia, Ethiopia, Fiji, Finland, France, Gabon, Georgia, 

Germany, Ghana, Greece, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, 

Iceland, India, Indonesia, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, 

Kyrgyz Republic, Lao PDR, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, 

Madagascar, Malawi, Malaysia, Mali, Mauritius, Mexico, Moldova, Mongolia, Morocco, 

Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, 

North Macedonia, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, 

Philippines, Poland, Portugal, Puerto Rico, Qatar, Russian Federation, Rwanda, Samoa, Sao Tome 

and Principe, Saudi Arabia, Senegal, Serbia, Sierra Leone, Slovak Republic, Slovenia, South Africa, 

Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syrian Arab Republic, Tajikistan, 

Tanzania, Thailand, Togo, Tunisia, Turkey, Uganda, Ukraine, United Arab Emirates, United 

Kingdom, United States, Uruguay, Uzbekistan, Vanuatu, Vietnam, Zambia, Zimbabwe. 

 

Figure 6: Geographical coverage of the index. Source: Own illustration. 
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Appendix IV: Country ranking per climate risk component 
 

 
Figure 7 Mean temperature risk rankings. The variation in the rankings for a specific country arises from the different values of 

k. The countries are ordered by the median ranking of a country over all possible values of k. 

Source: Own illustration.  
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Figure 8. Extreme temperature risk rankings. The variation in the rankings for a specific country arises from the different 

values of k. Source: The countries are ordered by the median ranking of a country over all possible values of k. 

Own illustration.  
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Figure 9. Water scarcity risk rankings. The variation in the rankings for a specific country arises from the different values of k. 

The countries are ordered by the median ranking of a country over all possible values of k. 

Source: Own illustration.  
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Figure 10. Flood risk rankings. The variation in the rankings for a specific country arises from the different values of k. The 

countries are ordered by the median ranking of a country over all possible values of k  

Source: Own illustration.  
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Figure 11. Health risk rankings. The variation in the rankings for a specific country arises from the different values of k. The 

countries are ordered by the median ranking of a country over all possible values of k 

Source: Own illustration.  
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Appendix V: Comparison across indexes. 
 

 

Figure 12 Absolute distance between the reversed benchmark climate risk index ranking and the ND-GAIN ranking for different 

versions of the climate risk index (from left to right: Climate Risk Index: Exposure off, Full Climate Risk Index, Climate Risk Index: 

Hazard and Exposure off, Climate Risk Index: Hazard off). The countries are ordered by the median ranking of a country for the 

benchmark (k=0.25, equal weights). 

Source: Own illustration.  
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Figure 13 Absolute distance between the reversed benchmark climate risk index ranking and the ESPON ranking for different 

versions of the climate risk index (from left to right: Climate Risk Index: Exposure off, Full Climate Risk Index, Climate Risk Index: 

Hazard and Exposure off, Climate Risk Index: Hazard off). The countries are ordered by the median ranking of a country for the 

benchmark (k=0.25, equal weights). 

Source: Own illustration.  
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Figure 14 Absolute distance between the reversed benchmark climate risk index ranking and the S&P ranking for different versions 

of the climate risk index (from left to right: Climate Risk Index: Exposure off, Full Climate Risk Index, Climate Risk Index: Hazard 

and Exposure off, Climate Risk Index: Hazard off). The countries are ordered by the median ranking of a country for the benchmark 

(k=0.25, equal weights). 

Source: Own illustration.  
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Appendix VI. Sensitivity tests  

 

Aggregate climate risk ranking. Sensitivity to the OWA weights (αs) 

 

Figure 15. Sensitivity to the OWA weights of country ranking by total climate change risk. 𝑘 = 0.25 (i.e. roughly 40% potential 

reduction in the aggregate risk when normalized adaptive capacity = 1 and normalized sensitivity = 0). OWA α = 1 (equal importance 

given to the different risk types) leftmost panel; OWA α = 0, (only maximum risk considered) rightmost.  

Notes: For α = 0 the riskiest countries are in Asia, Africa and the Caribbean. India ranks first, Pakistan ranks fourth, Afghanistan 

ranks seventh and Bangladesh ranks ninth. China is scored as the second riskiest, followed by Sudan at third place. Two countries in 

South-East Asia enter the ten most risky countries: Indonesia in fifth position and Vietnam in eighth. The bottom of the ranking features 

countries with a small population. For α = 1 the riskiest countries remain in Asia. In general, the landlocked Sub-Saharan African 

countries tend to disappear from the top of the ranking in favour of South-East Asian and coastal African countries. 

Source: Own illustration.   
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Figure 16. Sensitivity to the OWA weights of country ranking by total climate change risk. 𝑘 = 0.41 (i.e. roughly 50% potential 

reduction in the aggregate risk when normalized adaptive capacity = 1 and normalized sensitivity = 0). OWA α = 1 (equal importance 

given to the different risk types) leftmost panel; OWA α = 0, (only maximum risk considered) rightmost. 

Notes: For α = 0 Asian and African countries appear at the top of the ranking. India is at first place, followed by China at second. 

Pakistan is in forth position, Afghanistan scores sixth, Bangladesh at position eight. Haiti is at fifth position. Sudan is the riskiest 

African country and scores at third position. Niger is at position ten. Indonesia scores at position seven, Vietnam at position nine and 

the Philippines at position twelve. The bottom of the ranking is populated by small countries. For α = 1 India is scored as most risky. 

Pakistan is at third position, Bangladesh at position seven. China is the second most risky country. Indonesia holds forth position, 

Philippines is at position five, Vietnam at twelve, Coastal African countries are well represented at the top of the ranking. The bottom 

of the ranking is again populated with small countries. 

Source: Own illustration.  
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Figure 17. Sensitivity to the OWA weights of country ranking by total climate change risk. 𝑘 = 0.82 (i.e. roughly 70% potential 

reduction in the aggregate risk when normalized adaptive capacity = 1 and normalized sensitivity = 0). OWA α = 1 (equal 

importance given to the different risk types) leftmost panel; OWA α = 0, (only maximum risk considered) rightmost.  

Notes: For α = 0 India ranks first followed by China, Sudan in third, and the island state of Haiti in fourth position. South Asian 

countries are scored among the riskier: Pakistan ranks fifth, Afghanistan ranks sixth, while Bangladesh appears in the ninth position. 

Niger is at position seven and Chad in position eight. Vietnam is placed at tenth position For. α = 1 India and China are still on top 

followed by Pakistan and Haiti. Indonesia and the Philippines, at places five and six, rank higher than Vietnam, which comes in at 

place nineteen. Bangladesh scores at place eight. The landlocked African Countries disappear from the top positions in the ranking, 

while the coastal African countries appear among the riskiest. Small countries like Vanuatu, Iceland, Luxembourg, Samoa are 

among the least risky regardless of the expert preferences.  

Source: Own illustration.  
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Figure 18. Sensitivity to the OWA weights of country ranking by total climate change risk. 𝑘 = 2.16 (i.e. roughly 90% potential 

reduction in the aggregate risk when normalized adaptive capacity = 1 and normalized sensitivity = 0). OWA α = 1 (equal 

importance given to the different risk types) leftmost panel; OWA α = 0, (only maximum risk considered) rightmost.  

Notes: For α = 0 the Caribbean Island of Haiti is ranked first due to the exposure to extreme temperature risk. Landlocked African 

countries are scored as less risky under an equal valuation. On the other hand, countries on the African coasts are scored as riskier. 

Source: Own illustration.   
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Climate Hazard & Exposure ranking. Sensitivity to the OWA weights (αs)  

 

Figure 19 Country ranking according to climate change hazard and exposure (𝑘 = 0). When equal importance is given to the different 

risk types (OWA α = 1) in the leftmost panel, only maximum risk considered (OWA α = 0) to the rightmost. When only the largest risk 

is considered relevant the climate risk ranking is dominated by Asian countries with large populations. Countries with a small 

population tend to be ranked as less risky. Under equal risk valuation the landlocked African countries of Sudan and Niger are replaced 

by the coastal African counties of Kenya (twelfth place), Nigeria (sixteenth place), Ghana (seventeenth place). 

Source: Own illustration. 
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Climate Hazard ranking. Sensitivity to the OWA weights (αs) 

 

Figure 20. Country ranking according to climate change hazard (k=0, exposure = 1). Equal importance given to the different risk 

types (OWA α = 1) in the leftmost panel, only maximum risk considered (OWA α = 0) to the rightmost.  

Source: Own illustration. 

Note: for α = 0 the top positions in the rankings are generally populated by island states, countries in Africa, the Arab Peninsula, 

and the Middle East, but also in Northern and Central Europe and Central Asia. The USA, Mexico, Australia, and Papua New 

Guinea are down in the rank alongside Switzerland. Laos, Myanmar Sri Lanka also rank among the least risky alongside coastal 

Liberia, Cote d'Ivoire, Gabon and landlocked Lesotho and Zambia. For α = 1 still small islands score high. The Kyrgyz Republic, 

China and India rank high alongside Poland, the Slovak Republic, Germany, and Sweden. Landlocked African countries also obtain 

high scores. The USA also score high. Australia and Papua New Guinea, on the other hand, consistently place at the bottom levels 

regardless of the expert preferences. This is also true for the countries in South and Central America and Canada. The West-African 

coast is also represented among the least risky regions with countries like Guinea, Cote d'Ivoire, Togo, and Benin scoring low in the 

rankings. Honduras, Bolivia, and Cote d'Ivoire are ranked as the least risky countries regardless of the expert preferences. 
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Climate Vulnerability ranking. Sensitivity to the OWA weights (αs) 
 

 
Figure 21. Country ranking according to climate change vulnerability. k=0.25. Equal importance given to the different risk types 

(OWA α = 1) in the leftmost panel, only maximum risk considered (OWA α = 0) to the rightmost.  

Source: Own illustration. 
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Figure 22. Country ranking according to climate change vulnerability. k = 0,41. Equal importance given to the different risk types 

(OWA α = 1) in the leftmost panel, only maximum risk considered (OWA α = 0) to the rightmost. 

Source: Own illustration.  
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Figure 23 Country ranking according to vulnerability. k = 0,82. Equal importance given to the different risk types (OWA α = 1) in 

the leftmost panel, only maximum risk considered (OWA α = 0) to the rightmost. 

Source: Own illustration.  
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Figure 24. Country ranking according to vulnerability. k = 2,16. Equal importance given to the different risk types (OWA α = 1) in 

the leftmost panel, only maximum risk considered (OWA α = 0) to the rightmost. 

Source: Own illustration.  
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