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1 Introduction

There is near unanimous scientific consensus that climate change affects human health, behaviour,

and activity (Patz et al., 2005; Deschênes and Moretti, 2009; Zivin and Neidell, 2014; Cattaneo

and Peri, 2016) and has a negative impact on economic development (Stern, 2007; Hsiang and

Meng, 2015). Over the past decades, the economic risk of climate change has been quantified by

means of so-called Integrated Assessment Models (IAMs) in which the effects of climate change

are captured in terms of their cost and benefits via damage functions. IAMs easily allow to relate

climate variables (e.g., temperature, sea-level rise, rainfall, CO2 concentration) to economic welfare.

However, these models have been widely criticized, since they suffer from several limitations. In

particular, it has been questioned that IAMs have weak empirical supports (Pindyck, 2013; Diaz and

Moore, 2017). To address some of the issues associated with the use of IAMs to study the economic

costs of climate change, more recent analyses have incorporated empirical evidence suggesting that

rising temperatures negatively affect real economic activity (Dell et al., 2012; Colacito et al., 2016;

Du et al., 2017) into Dynamic Stochastic General Equilibrium (DSGE) models (Bansal et al., 2016;

Donadelli et al., 2017). Empirical findings and quantitative model-based results confirm that a rise

in average temperature has a negative impact on key macroeconomic aggregates (e.g., productivity

and consumption growth) and equity prices.

However, as also pointed out by Diaz and Moore (2017), both standard IAMs and recently

developed temperature-related DSGE models typically estimate the effects of equilibrium changes

in mean temperature (or rainfall or sea-level), but not necessarily the effects of extremes (persistent

heatwaves) or stochastic variability (storm surges). The impact of climate change may be actually

the result of variations in both the mean and the standard deviation of climate drivers (Rind et al.,

1989; Mearns et al., 1996). By focusing exclusively on changes in the mean, the overall and true

impact of climate change on human activity could be seriously underestimated (Katz and Brown,

1992; Schär et al., 2004). For example, modifications of climate variability at the inter-annual time

scale are key to capturing extreme weather events such as multi-year droughts (Peel et al., 2005)

and water scarcity (Veldkamp et al., 2015). In this respect, Elagib (2010) and Ito et al. (2013) show

that intra-annual temperature variability is associated with extreme air temperature. Moreover,

changes in the intensity of extreme weather events, such as heatwaves, are highly sensitive to shifts

in intra-annual temperature variability (Fischer and Schär, 2010). Thus, other than mean values,

the dynamics of volatility in climate drivers may be relevant for the understanding of extreme
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events, and, consequently, for the impact of climate change on real economic activity (Brown and

Lall, 2006).

Supporting the view that volatile climate conditions matter, some studies have examined the

relationship between weather dynamics and fluctuations in consumer spending. Heavy rain, snow,

and other extreme events are factors that tend to force people to stay home. This in turn would

lower sales (Parsons, 2001). Broadly, the idea is that highly volatile weather conditions may impact

consumption decisions (Starr-McCluear, 2000; Lazo et al., 2011). Another stream of research argues

that the effect of weather on consumer spending is mediated by mood. High variability in weather

conditions has a negative impact on mood. For instance, Spies et al. (1997) and Murray et al.

(2010) empirically observe that people in good mood tend to be more willing to buy consumer

goods than those in bad moods. In a similar spirit, another branch of literature finds instead

that stock market anomalies may be the consequence of relevant weather factors (Saunders, 1993;

Kamstra et al., 2003; Cao and Wei, 2005). For example, Kamstra et al. (2003) and Garrett et al.

(2005) find that seasonal weather effects (such as the number of daylight hours in a day) tend to

influence investors’ risk-aversion (i.e., market returns).

Taken together, existing evidence suggests the presence of two channels through which an ad-

verse shock in climate conditions may affect economic factors. The first one operates via the

destruction of capital through adverse weather events dampening innovations, output, and produc-

tivity (Fankhauser and S.J. Tol, 2005; Stern, 2013). The second one operates via the influence that

weather has on mood translating into consumption spending (Spies et al., 1997; Murray et al., 2010)

and investment decisions in equity markets (Kamstra et al., 2003; Cao and Wei, 2005). Loosely

speaking, more volatile weather conditions lead to a higher probability of extreme events, which in

turn implies stronger effects on capital accumulation and consumers’ mood.

Motivated by this evidence, we examine the effects of volatility in weather conditions on macro-

variables and asset prices. Specifically, we investigate both empirically and theoretically whether

shifts in the volatility of temperature affect aggregate productivity, economic growth, welfare, and

equity prices. While the majority of climate change studies examine the effect of rising temperatures

on real economic activity, to the best of our knowledge there is no study focusing on temperature

volatility and its macroeconomic effects. With this paper we aim to fill this gap.

Monthly data on UK temperature for the period 1659-2015 are employed to build an intra-

annual temperature volatility index. Since both relatively low and relatively high temperature

volatility may be harmful, our temperature volatility index is represented by the absolute deviation
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from an annual benchmark volatility value (i.e., historical average intra-annual volatility observed

in the pre-industrial revolution era).1 We then employ data on TFP (macro-aggregates, stock

market, risk-free rate) for the period 1800-2015 (1900-2015). Empirically, we study the effect of

changes in temperature volatility via Granger causality and standard VAR analyses over different

historical periods (i.e., 1800-1900, 1900-1950, and 1950-2015). We find that the sign of the causality

going from temperature volatility to TFP growth changes across time. For the sample 1800-1900,

no causality is present between temperature volatility and productivity growth. Over the period

1900-1950, the causality is unidirectional, going from temperature volatility to TFP growth, with

a positive sign. In the post-war period, the direction of the causal effect remains unchanged but

temperature volatility now affects TFP growth negatively. On one hand, this change in direction

could be due to the different sectoral structures characterizing the UK economy during those

periods. On the other, it can be driven by the increasing number of extreme weather events

observed over the period 1950-2015. The VAR analysis confirms that the way in which temperature

volatility affects TFP growth varies over the three subsamples. During the period 1800-1900 no

effect is present, while it seems to be positive for the period 1900-1950 and negative for the period

1950-2015. These results are robust to the inclusion of macroeconomic and financial variables.

Over the period 1950-2015, temperature volatility is also found to significantly undermine equity

valuations. In our cross-sectional asset pricing tests using UK stock market portfolios, we then find

that temperature volatility risk carries a significant and positive risk premium. Similar results are

obtained after controlling for market and macroeconomic risk and for EU portfolios.

This set of novel empirical facts is rationalized by means of a production economy featuring

long-run macro and temperature volatility risk. More precisely, we calibrate the model to match

the drop in TFP growth generated by a temperature volatility shock as well as to the main tem-

perature statistics observed in the UK over the past 60 years. We choose the post-war sample,

since we find the strongest adverse climate effects in this period. This is in line with existing

evidence documenting negative temperature effects in the post-war period (see e.g., Dell et al.,

2012; Colacito et al., 2016). In our production economy a temperature volatility shock gives rise

to a negative response of productivity, macroeconomic quantities, and equity valuations, consistent

with our novel empirical evidence. In addition, in the model temperature volatility risk commands

a positive risk premium. Welfare costs of this type of risk are substantial and amount to 9% of the

1In a robustness test we study the effect on the TFP using a different temperature volatility index (i.e., inter-annual
volatility). The results from this test are reported in Appendix B and discussed in Section 3.4.
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agent’s consumption bundle in our benchmark scenario. Moreover a rise in temperature volatility

is found to have long-lasting negative effects on output and labor productivity growth. Over a

50-year horizon, a single one-standard deviation shock reduces both cumulative output and labor

productivity by about 1.0 percentage points (pp). In an economy featuring capital depreciation

risk, welfare costs of temperature volatility risk increase when depreciation shocks are positively

correlated with temperature volatility shocks, meaning that higher climate variability results in an

increasing occurrence of natural disasters, which destroys capital faster. If we allow for adapta-

tion to climate uncertainty by assuming a positive correlation between temperature volatility shocks

and long-run productivity shocks (i.e., the economy immediately responds to temperature volatility

shocks in terms of technology, which increases productivity), temperature volatility risk produces

welfare gains and a drop in the equity risk premium. This evidence suggests that “adaptation” is

important to reduce the economic costs associated to temperature volatility risk.

Our benchmark production economy features capital and labor dynamics. For reasons of robust-

ness, we also study the macro and welfare effects of temperature volatility shocks in an endowment

economy. By calibrating the model to match the main consumption dynamics and the empirically

observed impact of temperature volatility shocks on consumption growth, we find qualitatively and

quantitatively similar results.

The rest of this paper is organized as follows. In Section 2, we review the related literature.

Section 3 presents the main empirical findings concerning the effects of temperature volatility

shocks on macro and financial aggregates. In Section 4, we describe our production economy

featuring temperature volatility risk. Section 5 presents the quantitative results. To shed light

on the robustness of the quantitative implications of temperature volatility shocks, we analyse an

endowment economy in Section 6. Section 7 concludes.

2 Related Literature

Our study is primarily related to the most recent empirical and theoretical literature examining

the effects of climate change on macroeconomic and financial aggregates. Most papers in this field

investigate this issue by looking at the impact of changes in mean temperatures. For example,

Dell et al. (2012), Colacito et al. (2016), and Du et al. (2017) find that rising temperatures neg-

atively affect economic growth. Moreover, Bansal et al. (2016) and Donadelli et al. (2017) show

that temperature shocks have a significant negative effect on equity valuations and carry a positive
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premium in equity markets. Unlike these studies, we do not examine the effects of a rising tempera-

ture level but examine the implications of temperature volatility shocks on aggregate productivity,

consumption, and equity prices. In this respect, we support Katz and Brown (1992) and Schär

et al. (2004) who argue that focusing exclusively on the change in the mean of climate variables

may underestimate the overall economic costs of climate change.

Our paper is also connected to the literature on the economics of climate change quantifying

the macroeconomic and financial effects of global warming. A popular approach to quantifying the

economic costs of climate change and carbon emissions is the use of IAMs (Stern, 2007; Nordhaus,

2008). Recent contributions in this class of models are provided by Golosov et al. (2014) and Cai

et al. (2015) who study climate change within a DSGE framework. Bansal and Ochoa (2011a)

and Bansal et al. (2016) account for temperature dynamics in long-run consumption risk models to

quantify the effects of temperature shocks on consumption and asset prices. We differ from IAMs

as we do not model temperature effects on economic activity as a damage function on the level of

GDP, but rather on the growth rate of TFP. We therefore allow temperature to permanently affect

economic activity as in the long-run consumption risk models (see also Pindyck, 2012). Unlike

the latter, we model temperature effects in a production economy framework, which allows us to

analyze the effects of temperature on investment and labor quantities. Moreover, as opposed to

IAMs, we do not compute economic costs as losses in GDP but follow Bansal and Ochoa (2011b)

who define welfare costs of temperature risk as in Lucas (1987).

Finally, our theoretical analysis builds on the recent production-based asset pricing literature

dealing with the long-run effects of aggregate productivity shocks (Croce, 2014) or oil shocks (Hitze-

mann, 2016; Hitzemann and Yaron, 2016; Ready, 2016) on macroeconomic aggregates and asset

prices. Most of the elements of our production economy are therefore as in Croce (2014). What

is new in our model is that aggregate productivity is influenced by temperature volatility shocks,

as suggested by the empirical evidence. In this respect, we are more closely related to Hitzemann

et al. (2016) who develop a two-sector production model to study the effects of oil volatility risk

on macroeconomic variables and asset prices.

3 The Facts

This section empirically examines the implications of temperature volatility shocks. First, in Sec-

tion 3.1, we describe the data employed in our analysis and presents some preliminary facts. In
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Section 3.2, we analyze the effects of temperature volatility shocks on aggregate macro quantities

such as productivity, output, consumption, and investment. For robustness purposes, Section 3.3

compare temperature level and temperature volatility shocks. A battery of robustness tests on

the macroeconomic implications of temperature volatility shocks are discussed in Section 3.4. The

effect of temperature volatility shocks on asset prices are then presented in Section 3.5. We finally

examine whether temperature volatility shocks are priced in the cross-section of equity returns in

Section 3.6.2

3.1 Data description and some preliminary facts

Our empirical analysis on the effects of temperature volatility (hereinafter TV OL) on macroe-

conomic and financial aggregates is based on UK annual data. Data on real TFP, output, con-

sumption, investment, and labor force have been retrieved from the “Bank of England’s Three

Centuries Macroeconomic Dataset”. All macroeconomic series run from 1900 to 2015, except

for TFP which starts in 1800. The equity market return and the risk-free rate have been ob-

tained from the “Barclays Equity Gilt Study 2016” Data are annual for the period from 1900

to 2015. Monthly temperatures have been retrieved from MET Office for the period 1659-2015

(http://www.metoffice.gov.uk/hadobs/hadcet/). This dataset represents one of the longest

continuous temperature records available. We acknowledge that MET temperatures are observed

only for central England. However, for the purpose of our analysis this does not represent an issue.

In fact, as suggested by Croxton et al. (2006), temperature in the central UK represents a good

proxy for the average temperature in the UK.

In the spirit of Katz and Brown (1992) and Schär et al. (2004), we capture changes in climate

conditions by means of shifts in TV OL. Precisely, we rely on a temperature anomaly volatility

index, defined as the difference between the intra-annual volatility and a benchmark volatility level.

The latter is represented by the average intra-annual volatility calculated over the pre-industrial

revolution era in the UK (i.e., 1659-1759). Note that both positive and negative deviations with

respect to the benchmark may adversely affect the economy. It has been shown that a relatively high

level of TV OL tends to be associated with more frequent extreme weather events (see, for example,

Elagib, 2010; Ito et al., 2013; Brown and Lall, 2006). On the other hand, a year with relative

low variation across monthly temperatures – caused, for instance, by a persistent summertime

2A brief explanation of the methods used to study the effects of temperature volatility on real and financial
aggregates is reported in Appendix A.
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heatwave – could results in severe droughts and flow of surface waters. As a consequence, crop and

hydroelectricity production drop and irrigation is largely reduced. In addition, substantial weather

fluctuations (positive or negative) may affect people’s mood leading to changes in consumption

dynamics (Spies et al., 1997; Murray et al., 2010) and portfolio investment decisions (Kamstra

et al., 2003; Cao and Wei, 2005). Our TV OL measure is thus defined as follows:

TV OLt �| σpJAN�DECqt � σ̄pJAN�DECq1659�1759
|, for t � 1760, ..., 2015, (1)

where σpJAN�DECqt indicates intra-annual volatility in year t (i.e., the standard deviation measured

from January to December of each post-industrial revolution era), and σ̄pJAN�DECq1659�1759
repre-

sents the average intra-annual volatility observed over the industrial revolution era (i.e., 1659-1759).

Figure 1: Temperature dynamics and extreme weather events

Panel A: TV OL vs. Extreme Weather Events Panel B: TV OL vs. ∆c Panel C: TV OL vs. Rm
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Notes: Panel A depicts the dynamics of the UK intra-annual temperature volatility (black line, 5Y average) and the annual

average number of weather extreme events (dotted gray line, 5y average). Annual number of extreme events :� number of

extreme rainfalls, floods, frosts, hot temperature anomaly, and droughts occurred within a year in the UK for the period

1900-2015. The number of extreme events is constructed using the chronological listing of events reported in the website

http://www.trevorharley.com/weather_web_pages/britweather_years.html. Panel B plots the dynamics of the UK intra-

annual temperature volatility (black line, 5Y average) and consumption growth (dotted gray line, 5y average). Panel C presents

the dynamics of the UK intra-annual temperature volatility (black line, 5Y average) and the stock market returns (dotted gray

line, 5y average). In all graphs the dotted vertical line indicates the year 1950. “Corr”:= correlation between the two time

series plotted in the graphs.

Climate change is expected to increase the frequency of extreme weather events. Of course,

linking any single weather event to global warming can be complicated. However, volatility in

main climate drivers (especially in temperature and rainfall) seems to be more strongly connected

with the frequency of severe weather events. This is confirmed by Figure 1 (Panel A) which shows

(historically) a positive correlation between TV OL and the number of extreme weather events.

Importantly, this positive relationship has intensified over the post-war period. In addition, TV OL

is found to be negatively correlated with consumption growth (Figure 1, Panel B) and aggregate

equity market returns (Figure 1, Panel C). In both cases, the negative relationship is stronger for
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the period 1950-2015. These dynamics confirm an increasing link between climate-change related

uncertainty and economic quantities, and could be responsible for increasing adaptation costs (or

slower adaptation).

3.2 Temperature Volatility Shocks and the UK Macroeconomy

To test for the sign and direction of effects between TV OL and macroeconomic dynamics over

time, we perform a Granger causality test (GC) between TFP growth (∆a) and TV OL for three

sub-samples: (i) 1800-1900; (ii) 1900-1950; (iii) 1950-2015. This allows us to account for the fact

that both climate change-related phenomena and the structure of the UK economy have changed

substantially over the last two centuries. In order to improve the size and power of the test,

a residual-based bootstrap technique is employed. Entries in Table 1 suggest the presence of a

time-varying component in the sign of the causality between TFP growth and TV OL.

Table 1: Granger causality: Productivity growth vs. temperature volatility.

Period 1800-1900 1900-1950 1950-2015
Panel A: LAG 1
TV OLÑ ∆a 0.366 (+) 0.051� (+) 0.074� (–)
∆aÑ TV OL 0.386 (+) 0.522 (–) 0.665 (+)
Panel B: LAG 2
TV OLÑ ∆a 0.544 (+) 0.099� (+) 0.039�� (–)
∆aÑ TV OL 0.193 (+) 0.439 (–) 0.411 (–)

Notes: p-values for the bootstrap test statistics are reported. �� and � denote significance, respectively at the 1%
and 5% significance level. The sign of the causality is reported in parentheses. “LAG” indicates the number of lags
used in the test regressions.

Across all samples, the causality goes in one direction, i.e., from TV OL to TFP growth. How-

ever, the sign of the observed causality changes over time. During the period 1900-1950, the sign

of causality is positive and statistically significant while in the past 60 years it is negative and also

statistically significant. Over the period 1800-1900 there is no evidence of a statistical significant

causality between TV OL and productivity. This finding may seem surprising as one would expect

negative effects from TV OL on TFP growth during periods in which production relied largely on the

agricultural sector which is well known to be more influenced by climate change, and in particular

by rising temperatures (Dell et al., 2012).3 We suspect that during the period 1900-1950, work-

ers in the agricultural sector were forced to adapt and invest in technology in order to reduce the

3As highlighted by Roses and Wolf (2018), the agricultural sector’s average share in total employment across
European regions was about 45% in at the beginning of the 20th century while during the period 1950-2010 it quickly
fell to less than 10%. This suggests that adverse effects of temperature volatility on TFP are found in the productive
sectors and not in the agricultural one which nowadays only marginally contributes to total output.
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economy’s vulnerability to extreme weather events, which may explain the positive and statistically

significant sign in the causality running from TV OL to TFP growth. In contrast, the past 60 years

show negative temperature volatility effects on TFP growth. During that time it is widely accepted

that the services-related sectors have contributed most to economic growth in developed countries.

As discussed in Tol et al. (2000), these sectors tend to be less influenced by climate change-related

phenomena. It is thus plausible that they used to invest in technologies for the purpose of in-

creasing productivity and not adapting to climate change. However, when extreme whether-related

events such as flood and storms – induced by drastic changes in temperature dynamics – occur,

the economy as a whole is affected.4 In other words, it is most likely that natural disasters will

generate more sizeable adverse effects in an economy characterized by highly-productive sectors

than in agricultural-based economies. Note also that the period 1950-2015 is characterized by a

higher number of extreme weather events compared to the pre-war period (see Figure 1, Panel A).

Even in the presence of a relatively high level of technology, a stronger variation in temperature

levels (within and across years) and an increasing number of extreme weather events could seriously

harm investments in adaptation to climate change. In particular, more volatile weather conditions

make (i) firms less willing to invest in adaptation due to higher cost and (ii) existing adaption

mechanisms weaker and slower.

Figure 2: Impulse-responses of TFP growth to TV OL shocks

Panel A: TV OLñ ∆a (1800-1900) Panel B: TV OLñ ∆a (1900-1950) Panel C: TV OLñ ∆a (1950-2015)
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Notes: This figure depicts the generalized impulse response of TFP growth (∆a) to a one-standard-deviation shock
in temperature volatility (TV OL). The impulse-response functions (IRFs) are obtained by estimating a bi-variate
VAR(1) using data for three different periods: (i) 1800-1900 (PANEL A); (ii) 1900-1950 (PANEL B); and (iii) 1950-
2015 (PANEL C). VAR estimations include a constant. Solid “black” lines: IRFs. Dashed “dark grey” line: 90%
confidence bands. Dashed “light grey” line: 68% confidence bands.

To quantify the impact of time-varying temperature uncertainty, we compute the impulse re-

4Using U.S. data at the industry-level for two different sub-periods (i.e., 1993-1997 and 1997-2011), Colacito et al.
(2016) find that over the last 20 years there is a stronger and more statistically significant negative effect of rising
temperatures on the two largest sectors of the U.S. economy: (i) services and (ii) finance, insurance, real estate. This
confirms the increasing inattention of these sectors to climate change as well as their lack in efficiency in fighting
against the occurrence of an increasing number of extreme weather events.
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sponse of future TFP growth to a one-standard deviation shock in TV OL.5 The analysis follows

the same strategy as the GC analysis and is thus carried out for the following sub-periods: 1800-

1900, 1900-1950, and 1950-2015. Impulse responses (dashed grey lines) – obtained from a bi-variate

VAR of TV OL and TFP growth – are depicted in Figure 2. It is worth noting that the impact

of a temperature volatility shock on TFP is not constant over time. Over the period 1800-1900,

the effect of a positive shock in TV OL on productivity growth oscillates around zero, ranging from

negative to positive responses, but is not statistically significant. The period 1900-1950 is instead

characterized by a positive impact of TFP growth following a TV OL shock: in the beginning the

response of productivity is slightly negative, but it becomes positive and statistically significant

after two periods. In line with the evidence provided by our preliminary GC analysis, the impact

of a TV OL shock on TFP growth has changed in the post-war era. In particular, a rise in TV OL

now dampens TFP growth. Importantly, this negative effect is statistically significant and lasts for

almost five years (Figure 2, Panel C).

For robustness purposes and to getter a better understanding of the effects of an increase in our

TVOL index on real economic activity, we also compute impulse responses of consumption, output,

investment, employment, and TFP growth to a TV OL shock. Given the absence of theories linking

temperature volatility and macroeconomic aggregates, we do not rely on any specific identification

scheme and compute generalized impulse responses that do not depend on the ordering of variables

in the system. Impulse responses of main macro-aggregates obtained from our augmented VAR are

reported in Figure 3 for the sub-period 1900-1950 and in Figure 4 for the post-war period. First,

and most importantly, we find that the inclusion of additional macroeconomic variables does not

affect the impact of the TV OL shock on TFP growth. As in Figure 2 (Panel B), over the period

1900-1950, TFP growth displays a small and statistically insignificant drop, with a fast subsequent

recovery and rebound from two years after the shock. Differently, for the period 1950-2015, a

TV OL shock produces a statistically significant drop in the TFP of around 0.4pp. In line with

our preliminary bi-variate estimations (see Figure 2, Panel C), this adverse effect lasts for (approx)

five years. Impulse responses on the other macroeconomic aggregates also differ across sub-periods.

For the period 1900-1950, we observe a drop in consumption and investment (Figure 3, Panels C

5Even if the direction of the causality between TV OL and TFP growth (∆a) results clear from entries in Table 1,
we decide to use the generalized impulse response function (GIRF) approach to detect the impact of TV OL shocks
on ∆a. We do so in order to be consistent with a multivariate VAR analysis (see Figures 3 and 4) that cannot rely
on a pre-determined variables’ ordering supported by an economic theory. In the presence of uncertainty around the
mechanisms driving the economy following TV OL shocks, a GIRF approach seems to be more appropriate. Anyway,
the patterns depicted in Figure 2 do not differ from the dynamics obtained using a Cholesky decomposition where
TV OL is ordered first. Results, not reported for the sake of brevity, are available upon request.
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Figure 3: Impulse response of macro-variables to TV OL shocks (1900-1950)

Panel A: TV OLñ ∆a Panel B: TV OLñ ∆L Panel C: TV OLñ ∆C
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Notes: This figure depicts generalized impulse responses of TFP growth (∆a), labor growth (∆L), consumption
growth (∆C), investment growth (∆I), and output growth (∆Y ) to a one-standard-deviation shock in temperature
volatility (TV OL). The impulse-response functions (IRFs) are obtained by estimating a six-variate VAR(1). A
constant is included. Solid “black” lines: IRFs. Dashed “dark grey” line: 90% confidence bands. Dashed “light grey”
line: 68% confidence bands.

and D). Instead, labor and output increase on impact (Figure 3, Panels B and E). However, most

of these effects are not statistically significant. Over the post-war period, labor, consumption and

output react differently to a TV OL shock. The impact on labor growth is negative and lasts for

several years, but statistically insignificant (Figure 4, Panel B). Output increases on impact and

displays a significant drop from two years after the shock (Figure 4, Panel E). Consumption displays

a similar (but less significant) response.

Overall, our empirical findings suggests that in the post-war era TV OL shocks tend to have

non-negligible adverse effects on real economic activity.6

3.3 Temperature Volatility and Temperature Level Shocks

Results presented so far have focused exclusively on the role of TV OL shocks. What about tem-

perature level shocks? Are results still valid once accounting for temperature level dynamics? To

address these issues, we need to investigate whether the negative effect of a TV OL shock on TFP

6To quantify the relative importance of temperature volatility shocks to macroeconomic fluctuations we have also
computed the variance decomposition of consumption, output, investment, and labor. In particular, in line with
our IRF analysis, we compute a generalized forecast error variance decomposition in the spirit of Lanne and Nyberg
(2016). Results suggest that TV OL shocks account for around 5% of the fluctuation in output and consumption over
a horizon of 3-5 years.
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Figure 4: Impulse response of macro-variables to TV OL shocks (1950-2015)

Panel A: TV OLñ ∆a Panel B: TV OLñ ∆L Panel C: TV OLñ ∆C
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Notes: This figure depicts generalized impulse responses of TFP growth (∆a), labor growth (∆L), consumption
growth (∆C), investment growth (∆I), and output growth (∆Y ) to a one-standard-deviation shock in temperature
volatility (TV OL). The impulse-response functions (IRFs) are obtained by estimating a six-variate VAR(1) including
a constant. Solid “black” lines: IRFs. Dashed “dark grey” line: 90% confidence bands. Dashed “light grey” line:
68% confidence bands.

growth observed over the period 1950-2015 is driven by shifts in the UK temperature level. We

therefore estimate a VAR(1) including TFP growth, average temperature level and temperature

volatility. Impulse responses from this test are depicted in Figure 5 and suggest that the adverse ef-

fect of a TV OL shock on the TFP growth is not absorbed by temperature level shifts. Surprisingly,

the TV OL-induced negative effect on TFP growth (Panel B) is more statistically significant than

the one induced by a temperature level shock. Note also that our robustness check corroborates

recent empirical findings – based mainly on U.S. data – showing that shifts in temperature levels

undermine real economic activity (Dell et al., 2012; Colacito et al., 2016; Bansal et al., 2016; Du

et al., 2017; Donadelli et al., 2017).

3.4 Robustness

We consider various robustness checks regarding the effect of TV OL shocks on TFP growth and

other macroeconomic aggregates. First, we compute impulse responses using a different identifi-

cation scheme. By relying on a simple Cholesky decomposition where TV OL is ordered first, we

show that a TV OL shock produces qualitatively and quantitatively similar impulse responses (see

Figure B.1). In a second check, we ask whether different VAR models provide similar responses

13



Figure 5: Impulse-responses of TFP growth to temperature (T ) and temperature volatility (TV OL)

Panel A: T ñ ∆a (1950-2015) Panel B: TV OLñ ∆a (1950-2015)
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Notes: This figure depicts the generalized impulse response functions of TFP growth (∆a) to a shock in the tempera-
ture anomaly index (Panel A) and in temperature volatility (Panel B). Impulse responses are obtained by estimating
a tri-variate VAR(1). A constant is included. In line with climate change studies, temperature anomaly index is
calculated as deviation of yearly average temperature respect to pre-industrial revolution temperature mean (1659-
1759). Solid “black” lines: IRFs. Dashed “dark grey” line: 90% confidence bands. Dashed “light grey” line: 68%
confidence bands.

of TFP growth and other macroeconomic variables to a TVOL shock. In practice, we compute

impulse responses using a different lag order (i.e., VAR(2)), the local-projection methodology sug-

gested by Jordà (2005), and a Bayesian VAR (BVAR). The impulse responses estimated from these

different VAR models and for the periods 1900-1950 and 1950-2015 are reported in Appendix B.

The pattern of the response of TFP growth to a TV OL shock seems to be quite robust with respect

to the choice of the VAR model. Actually, the dynamics depicted in Figure B.2 are similar to those

obtained from our benchmark bi-variate VAR (see Figure 2). Similar conclusions can be drawn

by comparing Figures B.3 and B.4 to Figures 3 and 4. Third, in order to further investigate the

time-varying nature of the impact of TFP growth to TV OL shocks, we compute the dynamics

of the impulse response of TFP growth to a shock in TV OL by estimating a Bayesian VAR in

a rolling-window fashion. Using a window length of 50 years, we confirm that TV OL began to

undermine productivity only around the middle of the 20th century (see Figure B.6). Importantly,

our time-varying estimates show that the magnitude of the negative impact of TV OL shocks on

the TFP is increasing over time. Fourth, we consider a different proxy for temperature volatility.

Specifically, we rely on an inter-annual measure of temperature volatility. This is captured by

computing the standard deviation of annual average temperatures using a rolling window of 10 (or

15) years. Bi-variate VAR estimates suggest that an inter-annual volatility shock has a negative

effect on productivity, as observed in Figure 2 (Panel C) where TV OL is defined as in Eq. (1). The

effect is weaker in statistical terms but more long-lasting (see Figure B.7). Finally, in attempting
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to further capture the effect of climate change variability on real economic activity, we estimate a

bi-variate VAR using a different climate variable. Specifically, we build a Rainfall Volatility Index

for the UK and estimate its impact on TFP growth. Similarly to the volatility of temperature,

rainfalls volatility is found to undermine aggregate productivity growth only in the post-war era.

However, the impact is less statistically significant and (slightly) less persistent (see Figure B.8).

Taken together, our empirical findings suggest that the nature of the effects of TV OL on TFP

growth in not constant over time. In particular, TV OL is found to positively (negatively) affect

TFP growth over the pre-war (post-war) period. Data for the period 1950-2015 also suggest that

TV OL shocks adversely affect the growth rate of output, investments, and consumption. This

evidence might be the result of firms’ inattention to the potential effects of climate change on the

technology stock in the manufacturing and services sectors. To examine whether these climate

change-related effects are also reflected in the dynamics of financial variables, we move to study

the relationship between TV OL and asset prices in the next section.

3.5 Temperature Volatility Shocks and Financial Variables

In the spirit of the most recent macro-finance literature focusing on the effects of climate change,

we also examine whether shocks in temperature volatility affect asset prices (Bansal and Ochoa,

2011a,b; Bansal et al., 2016). To this end we run a VAR with three variables including TV OL,

the equity market return (R), and the risk-free rate (Rf ). In doing so, we also check whether the

previously obtained response of TFP growth to TV OL is robust to the inclusion of these additional

variables which also might affect productivity growth (see Bansal et al., 2016; Croce, 2014).

Based on data availability, impulse responses are presented for two sub-samples: (i) 1900-1950

(Figure 6) and (ii) 1950-2015 (Figure 7). For the period 1900-1950, we find that the response of

both the risk-free rate (Figure 6 Panel A) and the equity return (Figure 6 Panel B) to a TV OL

shock is negative. However, these two effects are not statistically significant. Similar effects are

found for the period 1950-2015, but differently from the results of the pre-war period, we find that

the effect of a TV OL shock on the equity return is immediate and highly statistically significant

(Figure 7 Panel B). In Appendix B we also show that this pattern is robust with respect to different

VAR model specifications (Figure B.5, Panel B).

Finally, for the sake of robustness, we compute IRFs also from a tri-variate VAR with TV OL,

∆a, and R. The idea here is to investigate whether the two main transmission channels through

which TV OL shocks affect the economy do not vanish, when they are jointly considered. Figure
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Figure 6: Impulse response of financial-variables to TV OL shocks (1900-1950)

Panel A: TV OLñ Rf Panel B: TV OLñ R
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Notes: This figure depicts generalized impulse responses of the risk-free rate (Rf ) and the equity market return (R)
to a one-standard-deviation shock in temperature volatility (TV OL). The impulse-response functions (IRFs) are
obtained by estimating a three-variate VAR(1) including a constant. Solid “black” lines: IRFs. Dashed “dark grey”
line: 90% confidence bands. Dashed “light grey” line: 68% confidence bands.

B.9 shows that the effect of a TV OL shock is negative and statistically significant for productivity

(Panel A) and equity return (Panel B) over the post-war period, so it confirms that TFP and

equity represent the two main direct transmission channels of temperature volatility shock on the

UK economy.

Figure 7: Impulse response of financial-variables to TV OL shocks (1950-2015)

Panel A: TV OLñ Rf Panel B: TV OLñ R
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Notes: This figure depicts generalized impulse responses of risk-free rate (Rf ) and equity market return (R) to a
one-standard-deviation in temperature volatility (TV OL) shock. The impulse-response functions (IRFs) are obtained
by estimating a tri-variate VAR(1) including a constant. Solid “black” lines: IRFs. Dashed “dark grey” line: 90%
confidence bands. Dashed “light grey” line: 68% confidence bands.

3.6 Temperature Volatility Shocks and the Cross-Section of Returns

In this paper we are not only interested in the implications of TV OL shocks for macroeconomic

variables but also in their effect on asset prices, in particular the cross-section of stock returns.
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Our interest in the asset pricing implications of TV OL risk is also motivated by recent evidence on

the effects of temperature shifts on asset prices. Using US data, for instance, Balvers et al. (2017)

find that temperature shocks have a negative impact on equity market returns. Temperature

shocks are also found to have a positive impact on the cost of capital. The magnitude of this

impact is increasing over time. Using panel data from 39 countries, Bansal et al. (2016) also

show that temperature risks have a significant negative impact on equity valuations. Bansal and

Ochoa (2011a) find that temperature risk is priced in the cross-section of portfolio equity returns.

In particular, their cross-sectional tests suggest temperature-related risks carry a positive risk

premium. Moreover, the risk premium arising from temperature-related risks tends to be larger in

countries closer to the equator than in those further away from it.

We contribute to this literature by examining the implications of temperature volatility shocks

for the cross-section of UK (and EU) stock returns. To the best of our knowledge, ours is the first

study to investigate whether TV OL shocks carry a risk premium and if so, of which sign. We fill

this gap by means of standard cross-sectional regressions of stock returns. In our framework average

returns are a function of the newly introduced climate driver, namely TV OL innovation. In the

spirit of Bansal et al. (2016) and Garlappi and Song (2016), when estimating temperature volatility

risk premia, we control for market and productivity risks. In this respect, we let portfolio returns be

a function also of the excess return of the market portfolio, ReM , and the two-year moving-average

of aggregate productivity growth, ∆a.7 The following factor model is thus estimated:

ErRis � λβ1i, (2)

where Ri is the return of asset i, βi � rβmkt,i, β∆a,i, β∆TV OL,is is the vector of risk exposures of asset

i containing the exposures of stock returns to the market, variations in macro-economic growth and

innovations to temperature volatility. Finally, λ � rλMKT , λ∆a, λ∆TV OLs are the implied factor risk

premia which encompass both the vector of the underlying prices of risks and the quantity of risks.

The classical two-stage regression approach is followed. Therefore, in the first stage, we estimate

the exposure to the above risk factors (i.e., the betas) from full-sample time series regressions:

Rt,i � αi � βMKT,iR
e
M � β∆a,i∆at � β∆TV OL,i∆TV OLt � εt,i, @i. (3)

7To make our cross-sectional analysis comparable to existing studies focusing on effects of temperature shifts on
asset prices (Bansal and Ochoa, 2011a; Bansal et al., 2016; Balvers et al., 2017), in a robustness test, changes in
temperature level are considered as additional risk factor. The results remain unaffected and are available upon
request.
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The vector of risk premia is estimated from the cross-sectional second stage regression:

ErRis � α� β̂MKT,iλMKT � β̂∆a,iλ∆a � β̂∆TV OL,iλ∆TV OL � νi, (4)

where ErRis is the average return of each asset over time and the vector of estimated betas β̂i �
rβ̂MKT,i, β̂∆a,i, β̂∆TV OL,is for each portfolio is taken from the first stage regression p3q.8 We refer

to this approach as “Avg Returns”.

An alternative second stage regression is suggested by Fama and MacBeth (1973). Here, the

second step consists of computing T cross-sectional regressions of the returns on the betas estimated

from the first step. Formally,

Rt,i � α� β̂MKT,iλMKT,t � β̂∆a,iλ∆a,t � β̂∆TV OL,iλ∆TV OL,t � νt,i. (5)

The estimated λ is then computed by averaging the λs over T . This alternative “Fama-McBeth”

procedures gives exactly the same values for λ, but different standard errors.

In our benchmark tests, we use UK portfolios formed on different characteristics provided in

Stefano Marmi’s Data Library following the methodology outlined in Fama and French (1993).9

We first use six portfolios formed on size and book-to-market and six portfolios formed on size

and momentum, a total of twelve portfolios. We then use 40 portfolios formed on the following

characteristics: price-earnings, price to book, price to cash flow and gross profit margin. All these

portfolios are available for the period 1989-2011.

Table 2 reports the risk premium estimates from the second stage for the twelve UK benchmark

portfolios. Results are reported for both the univariate model where only temperature volatility

risk is considered (specification “1”) and the multivariate model accounting for market and macroe-

conomic risk (specification “2”). The risk premium estimates from TV OL shocks are positive and

statistically significant. Results are similar after controlling for market and macroeconomic (TFP)

risk. Similar conclusions can be drawn by looking at Table 3 which reports risk premia estimated

by employing the 40 UK portfolios. In this larger set of portfolios, the temperature volatility re-

lated risk premium is still found to be positive but smaller. Moreover, results are less statistically

significant when the “Fama-McBeth” approach is used (Table 3, Panel B).10

8Note that we obtain similar results when we use excess returns and impose a zero-beta restriction in the estimation
by running the second stage regression without an intercept.

9Data are freely available at http://homepage.sns.it/marmi/Data_Library.html.
10We have repeated the test by using each set of 10 single factor sorted portfolios and other portfolios formed on

alternative characteristics (e.g., price to sales, dividend yield, and 1 year EPS growth). The results – not reported
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Table 2: Temperature risk and 12 UK portfolio returns (1989-2011)

Panel A: Risk Premia (λ)
Avg Returns Intercept λMKT λ∆a λ∆TV OL

“1” 15.121 0.535
[9.481] [3.972]

“2” 11.901 -0.545 -0.155 0.652
[3.992] [-0.216] [-0.742] [6.255]

Panel B: Risk Premia (λ)
Fama-MacBeth Intercept λMKT λ∆a λ∆TV OL

“1” 15.121 0.535
[2.934] [2.369]

“2” 11.901 -0.545 -0.155 0.652
[1.661] [-0.066] [-0.578] [2.588]

Notes: This table reports the estimates of the temp-vol risk premium. Test assets are twelve UK portfolios: six portfolios
formed on size and book-to-market and six portfolios formed on size and momentum (Source: Stefano Marmi’s Data Library).
All portfolio returns are value-weighted returns expressed in local currency (GBP). We use annual data for the period 1989-2011.
The t-statistics in square brackets for the risk premium are adjusted for autocorrelation and heteroskedasticity following Newey
and West (1987).

Table 3: Temperature risk and 40 UK portfolio returns (1989-2011)

Panel A: Risk Premia (λ)
Avg Returns Intercept λMKT λ∆a λ∆TV OL

“1” 12.247 0.146
[31.645] [2.770]

“2” 10.530 0.854 0.151 0.161
[7.388] [0.549] [1.038] [2.370]

Panel B: Risk Premia (λ)
Fama-MacBeth Intercept λMKT λ∆a λ∆TV OL

“1” 12.247 0.146
[3.293] [0.873]

“2” 10.530 0.854 0.151 0.161
[3.071] [0.152] [0.497] [1.209]

Notes: This table reports the estimates of the temp-vol risk premium. Test asset are 40 UK portfolios: 10 portfolios formed
on price-earnings, 10 portfolios formed on price to book, 10 Portfolios formed on price to cash flow, 10 portfolios formed on
gross profit margin (Source: Stefano Marmi’s Data Library). All portfolio returns are value-weighted returns expressed in local
currency (GBP). We use annual data for the period 1989-2011. The t-statistics in square brackets for the risk premium are
adjusted for autocorrelation and heteroskedasticity following Newey and West (1987).

To get additional insights on the effect of temperature volatility shocks on the cross-section of

stock returns, in an alternative test we use also a larger number of portfolios. Precisely, we use

100 EU portfolios: 25 portfolios formed on size and book-to-market; 25 portfolios formed on size

and operating profitability; 25 portfolios formed on size and investment; and 25 portfolios formed

on size and momentum. Data on these EU portfolios are freely available from Kenneth R. French’s

Data Library for the period 1990-2015. Results from this alternative test are reported in Table 4.

The result with respect to temperature volatility shocks are qualitatively similar to those reported

in Tables 2 and 3.

Finally, for the sake of robustness, we perform our cross-sectional tests by controlling for the

for the sake of brevity – are qualitatively similar.
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2008-2009 Great Recession. We first run our one factor regression by focusing on the pre-2008

period. Second, in order to control for the crisis years we run a four factors regression where a

dummy capturing the 2008 and 2009 is added. Results are qualitatively similar and are reported

in Appendix C (see Tables C.1 and C.2).

Table 4: Temperature risk and 100 EU portfolios (1991-2016)

Panel A: Risk Premia (λ)
Avg Returns Intercept λMKT λ∆a λ∆TV OL

“1” 11.625 0.270
[31.366] [5.561]

“2” 3.774 6.330 0.738 0.368
[0.831] [1.512] [2.359] [3.093]

Panel B: Risk Premia (λ)
Fama-MacBeth Intercept λMKT λ∆a λ∆TV OL

“1” 11.625 0.270
[2.756] [1.637]

“2” 3.774 6.330 0.738 0.368
[0.821] [1.031] [2.640] [2.406]

Notes: This table reports the estimates of the temp-vol risk premium. Test assets: 100 European portfolios, i.e., 25 European
portfolios formed on size and book-to-market, 25 European portfolios formed on size and operating profitability, 25 European
portfolios formed on size and investment, 25 European portfolios formed on size and momentum (Source: Kenneth R. French’s
Data Library). We use annual data for the period 1991-2015. The t-statistics in square brackets for the risk premium are
adjusted for autocorrelation and heteroskedasticity following Newey and West (1987).

Note that the evidence that TV OL risk demands a positive risk premium in the cross-section

of stock market returns – even after controlling for market and macroeconomic risk – corroborates

the findings in Section 3.5. In Section 3.5 we find that TV OL shocks significantly affect financial

variables. Given that our empirical analysis predicts significant adverse effects of temperature

volatility on asset prices and macroeconomic variables for the post-war period, we will rationalize

these findings in a production economy featuring TV OL shocks. This will allow us to assess the

economic costs of this type of risk.

4 A Framework to Examine the Macro-Effects of TVOL Shocks

We rationalize our empirical findings within a production economy featuring long-run macro risk

à la Croce (2014) and temperature risk along the lines of Bansal and Ochoa (2011a) and Donadelli

et al. (2017). As a main novel ingredient, we introduce stochastic uncertainty of temperature into

the model (i.e., TV OL risk). Specifically, temperature dynamics are coupled with the evolution

of TFP in a way that innovations in temperature volatility adversely affect long-run productivity,

consistent with evidence in UK post-war data. In a robustness test, we also introduce a stochastic

depreciation rate of capital to provide new insights on the interplay of capital accumulation and
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climate change. Note that our main goal here is to maximize the intuition and insight into the

relationships between TV OL risk and the macroeconomy and asset prices, and avoid tangential

complications. We therefore strive to keep the model as simple as possible while still matching

main macro-quantities and asset prices. For this reason, we deliberately introduce real rigidities

into the model only in the form of capital adjustment costs and abstract from any other type of

frictions (e.g., financial and labor market frictions).

Temperature and productivity. We capture the economic effects of temperature volatility

shocks by using the following specification for productivity and temperature dynamics:

∆at�1 � µa � xt � xzt�1 � σaεa,t�1

xt � ρxxt�1 � σxεx,t

xzt�1 � ρzxx
z
t � τzσzεz,t�1 � τθσθεθ,t�1

zt�1 � µz � ρzpzt � µzq � eθt�1σzεz,t�1

θt�1 � ρθθt � σθεθ,t�1,

(6)

where the shocks εa,t�1, εx,t, εθ,t�1 and εz,t�1 are independent of each other and are each distributed

i.i.d. standard normally. In addition to temperature level shocks εz,t, we introduce shocks to the

volatility of temperature εθ,t.
11 The unconditional expected growth rate of productivity is µa.

The parameter µz captures the long-run average temperature level. In this economy, short-run

productivity shocks are induced by εa,t, whereas εx,t, εθ,t, and εz,t indicate long-run shocks affecting

the persistent stochastic components in productivity growth xt and xzt . The persistence of long-run

macro and temperature-related productivity shocks is measured by ρx and ρzx, respectively. We

specify two distinct long-run components for macro and temperature shocks in order to disentangle

the timing of those innovations. In contrast to long-run macro shocks, temperature-related shocks

contemporaneously impact TFP growth, as observed in the data.

The shock terms τzσzεz,t�1 and τθσθεθ,t�1 represent the impact of changes in the temperature

level and temperature volatility, respectively, both on TFP growth, as suggested by our novel

empirical analysis on UK data (see Figure 5).12 σzεz,t�1 is the unpredictable part of the change

11We specify stochastic volatility in the temperature process, depicted in the last two equations of the System 6,
as Hitzemann et al. (2016) model oil volatility risk to quantify the macroeconomic and financial effects of oil-specific
uncertainty shocks.

12Note that we slightly differ from Croce (2014) and Hitzemann et al. (2016) who introduce time-varying economic
uncertainty directly in the TFP. Said differently, we do not include uncertainty shocks to macro productivity. Con-
sistently with our empirical analysis, here we are exclusively interested on capturing the long-run effects of a shock
to the volatility of temperature (i.e., σθ ¡ 0).
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in temperature level, while the term eθt�1 represents time-varying volatility of temperature. In

this setup, θ represents a proxy for the volatility of key climate variables (in our case temperature

volatility as defined in Eq. (1)). The parameters τz and τθ in the dynamics for xz in the system (6)

capture the direction and the intensity with which unpredictable temperature level and temperature

volatility shocks impact long-run productivity growth. Based on the empirical analysis in Section

3.2, we assume τθ   0 when we study the quantitative implications of the model, i.e., TV OL

shocks have a negative impact on long-run expected productivity growth. For completeness and to

be consistent with our UK-based empirical evidence, we also let the model replicate the negative

effect on productivity of a shock in the level of temperature (i.e., τz   0). This is also in line

with recent studies showing that temperature level shocks harm real economic activity (see, among

others, Bansal and Ochoa, 2011b; Colacito et al., 2016; Du et al., 2017). Our goal here is to study

exclusively the quantitative implications of TV OL risk. We therefore abstract from studying the

effects of temperature level shocks on the UK macroeconomy.13

Households. The representative household is equipped with recursive preferences, as in Epstein

and Zin (1989):

Ut �
�
p1 � βqC̃1� 1

ψ

t � β
�
EtrU1�γ

t�1 s
	 1�1{ψ

1�γ
� 1

1�1{ψ
. (7)

C̃t is a Cobb-Douglas aggregator for consumption Ct and leisure 1 � Lt (the remainder of a total

time budget of 1, when the amount of labor is Lt):

C̃t � C̃pCt, Ltq � Cνt pAtp1 � Ltqq1�ν ,

where At denotes aggregate productivity (i.e., TFP).

The stochastic discount factor (SDF) reads:

Mt,t�1 � β

�
C̃t�1

C̃t

�1� 1
ψ �Ct�1

Ct


�1
�

U1�γ
t�1

EtrU1�γ
t�1 s

� 1{ψ�γ
1�γ

. (8)

Firms. The production sector admits a representative, perfectly competitive firm utilyzing capital

and labor to produce the output. The production technology is given by

Yt � Kα
t pAtLtq1�α,

13Note that imposing τz � 0 would not affect our results on the implications of TV OL shocks.
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where α is the capital share and labor Lt is supplied by the household. The aggregate productivity

growth rate, ∆at � log pAt{At�1q, has a standard long-run macro risk component and is subject to

temperature and temperature volatility risk, as described in Eq. (6).

The capital stock evolves according to

Kt�1 � p1 � δKqKt �G
� It
Kt

	
Kt,

where δK is the depreciation rate of capital. Gp�q, the function transforming investment into new

capital, features convex adjustment costs as in Jermann (1998):

G :� G
� It
Kt

	
� α1

1 � 1
τ

� It
Kt

	1� 1
τ � α2.

Asset prices. The intertemporal Euler conditions defining the risk-free rate Rft and the return on

capital Rt are as follows:

1

Rft
� EtrMt,t�1s, 1 � EtrMt,t�1Rt�1s,

where

Rt�1 �
αYt�1�It�1

Kt�1
� qt�1pGt�1 � 1 � δKq

qt
.

The price of capital qt is equal to the marginal rate of transformation between new capital and

consumption:

qt � 1

G1
�
It
Kt

	
Given the risk-free rate Rft � 1

EtrMt,t�1s
we calculate the unlevered equity risk premium as

Rex,t � Rt �Rft�1.

Labor market. In the absence of labor market frictions, optimal labor allocation implies that

the marginal rate of substitution between consumption and leisure equals the marginal product of

labor:
1 � ν

ν

� Ct
1 � Lt

	
� p1 � αqYt

Lt
.
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Market clearing. Goods market clearing implies that

Yt � Ct � It.

The model is solved numerically by a second-order approximation using perturbation methods as

provided by the dynare++ package.

5 Quantitative Analysis

5.1 Calibration

Our benchmark model is calibrated to an annual frequency and requires us to specify nineteen

parameters: four for preferences, three relating to the final goods production technology and labor

market, four describing the TFP process, and eight for the dynamics of the UK temperature.14 The

model is calibrated to match the adverse climate effects on TFP growth for the period 1950-2015

as they are found to be the strongest among all periods.

Let us first discuss the “less standard”, i.e., UK temperature-related parameters. The per-

sistence of the innovations in the long-run temperature risk component is chosen to let the model

reproduce the relative persistent effect of TV OL shocks on productivity growth observed in postwar-

UK data (Figure 2, Panel C). To this end, we set ρxz = 0.6. Note that this value is in line with the

average empirical estimates reported in Figure 8 where we compute a series of ρxz using a rolling

window of 50 years for the period 1900-2015.15

The two parameters measuring the sensitivity of TFP growth to temperature-related shocks are

jointly calibrated using the empirical evidence provided in Section 3.3. Therefore, the parameter τθ,

measuring the impact of TV OL shocks on TFP growth, is calibrated to a value of �0.0285. This

implies that in the model productivity growth falls by 0.4pp following a one-standard deviation

temperature volatility shock (see Figure 5, Panel B). The parameter τz, measuring the impact of

temperature level shocks on TFP growth, is then calibrated to a value of �0.0054, which implies

in our model that productivity growth declines by around 0.3pp after an unexpected one-standard

deviation increase in temperature (see Figure 5, Panel A). Regarding the stochastic volatility pa-

14Note that the calibration presented here is meant as a benchmark. We have found that our main results are
robust to reasonable variations around this benchmark.

15In the literature on adaptation to climate change, the parameter ρxz can be interpreted as the speed of adaptation
(see e.g. Tol, 2002). A value of 0 refers to the case of an immediate adaptation to temperature-related shocks while
a value of 1 would imply no adaptation. According to figure 8, the speed of adaptation has increased during the last
three decades, which may be due to technological improvements.
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Figure 8: Speed of adaptation
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Notes: This figure shows the time series of the parameter ρzx representing the persistence of temperature-related TFP
shocks. ρzx is estimated from the system in Eq. (6) – in a state space framework – using a rolling window of 50 years
for the period 1900-2015. Covariance is estimated using Huber-White standard errors.

rameters in the temperature process, we set the persistence of TV OL shocks equal to 0.85, as

suggested by empirical estimates. The standard deviation of time-varying temperature uncertainty,

σθ, is assumed to be a small fraction of the volatility of temperature level shocks. Precisely, we

impose 0.25 � σz.16 The other parameters regarding temperature dynamics are set to match the

UK temperature statistics observed in the data over the period 1950-2015. In particular, we set

µz � 9.74 (degrees Celsius), ρz � 0.4, and σz � 0.56 to match the long-term mean, persistence and

volatility of UK temperature, respectively.

We next turn to the standard parameters. Most of the parameters are set in accordance with the

long-run risk literature and are chosen to match the main dynamics of UK macroeconomic quantities

and prices. More precisely, as in Croce (2014), we set the coefficient of relative risk aversion, γ, and

the elasticity of intertemporal substitution (IES), ψ, to values of 10 and 2, respectively (i.e., the

representative agent has preference for the early resolution of uncertainty, since γ ¡ ψ�1). In line

with Bansal and Ochoa (2011b), the annualized subjective discount factor, β, is fixed at 0.988. The

consumption share in the utility bundle C̃ is chosen such that the steady-state supply of labor is one

third of the total time endowment of the household. Given the other parameters, this is achieved

by setting ν = 0.3407. On the final production side, we set the capital share α in the production

technology equal to 0.345 as in Croce (2014). Regarding the adjustment cost parameters, τ is set

to 0.7 as in Kung and Schmid (2015). The constants α1 and α2 are chosen such that there are no

adjustment costs in the deterministic steady state. The depreciation rate of capital δK is set to

16Note that both temperature uncertainty-related parameter values (i.e., ρθ � 0.85 and σθ � 0.25σz) are in line
with GARCH(1,1) estimations which confirm that the conditional variance of UK temperature is time-varying.
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Table 5: Benchmark calibration

Parameter Description Source Value

Preferences

β Subjective time discount factor 2 0.988
ψ Elasticity of intertemporal substitution 1 2
γ Relative risk aversion 1 10
ν Consumption share in utility bundle 5 0.3407

Production and Investment Parameters

α Capital share in final good production 1 0.345
δK Depreciation rate of physical capital 1 0.06
τ Capital adjustment costs elasticity 3/4 0.7

TFP

µa Long-run mean of TFP 5 0.0142
σa Volatility of short-run shocks to TFP 5 0.0205
ρx Long-run TFP shock persistence 5 0.97
σx Volatility of long-run shocks to TFP 5 0.12*σa
Temperature

µz Long-run mean of UK temperature 5 9.74�C
τz Impact of temperature level innovations on TFP growth 5 -0.0054
τθ Impact of TV OL innovations on TFP growth 5 -0.0265
ρzx Long-run temperature-related TFP shock persistence 5 0.6
ρz Temperature persistence parameter 5 0.4
ρθ Persistence of volatility shocks to UK temperature 5 0.85
σz Standard deviation of level shocks to UK temperature 5 0.56
σθ Standard deviation of volatility shocks to UK temperature 5 0.25*σz

Notes: This table reports the set of parameters used to calibrate (at an annual frequency) the model described in Section 4.
Parameter sources: 1 = Croce (2014), 2 = Bansal and Ochoa (2011a), 3 = Kung and Schmid (2015), 4 = Donadelli and Grüning
(2016), 5 = own calibration.

0.06 as in Croce (2014). The parameter µa is set to a value of 0.0142, so that the average annual

TFP growth rate is 1.42%, as indicated by the UK data. The volatility of the short-run shock,

σa, is calibrated to match the annual volatility of output growth observed in the macroeconomic

data. We then calibrate the parameters of the long-run productivity risk process, xt, according to

empirical estimates, resulting in ρx � 0.97 and σx � 0.12σa.
17

17We estimate the following state-space model:

∆at � 0.0142� xt�1 � σa,tloomoon

0.015���

� εa,t,

xt � ρxloomoon

0.97���

�xt�1 � σx,tloomoon

0.002���

�εx,t,

where 0.0142 corresponds to the UK long-run mean of aggregated productivity estimated over the period 1950-2015,
ρx is the estimated persistence parameter of the long-run productivity component, σa,t and σx,t are the estimated
volatilities of the short- and long-run TFP shock, and εa,t and εx,t are independent and identically distributed
standard normal shocks. Estimates are obtained using the Newton-Raphson optimization procedure with Marquardt
step. Huber-White standard errors are employed in order to account for heteroskedasticity. *** indicates significance
at 1% level.
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5.2 Macro and Asset Pricing Implications

The main results produced by our benchmark calibration (BC) are reported in Table 6, denoted by

specification [1]. In line with standard long-run risk models, our framework produces ErRLEVex s �
3.14%, a value close to what is observed on the major capital markets around the world. Compared

to specification [2], representing a model without temperature volatility effects, we observe that the

impact of TV OL on TFP growth significantly affects asset prices. ErRLEVex s increases by 11 basis

points when volatility effects of temperature are introduced.

Equity volatility also experiences an additional increase by 15 basis points after introducing

temperature volatility effects. The correlation between the excess return and temperature volatility

is negative with a value of �0.13. The reason for the negative sign is that unexpected increases in

TV OL negatively affect firms’ productivity and, hence, their return on capital. In the data, the

negative correlation is somewhat stronger than in our benchmark model.

The negative effects of TV OL increases on the macroeconomy are reflected by a negative corre-

lation between the volatility of temperature and both TFP and output growth, with values of �0.19

and �0.16, respectively. An important advantage of our model is that the inclusion of temperature

volatility risk can explain asset price dynamics and replicate TV OL effects in the data, while it

does not affect the long-run moments of macroeconomic quantities.

To analyse how TV OL shocks are transmitted through the economy, we plot the responses of

macro quantities to an unexpected increase in TV OL (see Figure 9). This shock negatively affects

the temperature-related long-run risk component of productivity growth. While long-run macro

shocks have an delayed effect on productivity, an unexpected temperature volatility increase reduces

TFP growth on impact by about 0.4pp. This translates into an immediate decrease in consumption

growth of more than 0.2pp (Panel B) and a decrease in investment of more than 0.4pp, which

reduces total output growth by almost 0.3pp (Panel C).

Our production economy model further allows us to analyse the impact of temperature volatility

shocks on labor market dynamics. While the effect on labor growth is negative during the first two

periods, it becomes positive afterwards due to the income effect. As the agent feels poorer, she re-

duces consumption of leisure and increases labor supply. Labor productivity growth falls on impact

as well, since labor growth decreases less than output growth. Later on, the effect is still nega-

tive since labor growth turns positive, while output growth is still negative over a longer horizon.

Thus, our model reproduce the negative effects of a temperature volatility shock on macroeconomic
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Table 6: Model vs (UK) data: Macroeconomic quantities and asset prices

Variable Data BC τθ � 0 ρpεx, εθq � 0.5 ρpεx, εθq � 1

[1] [2] [3] [4]

MACRO QUANTITIES

Ep∆aq 1.44 1.43 1.44 1.43 1.44

AC1p∆aq 0.25 0.12 0.10 0.10 0.08

σp∆yq 2.02 2.05 2.00 2.02 2.00
σp∆lq 0.26 0.68 0.68 0.67 0.67

σp∆cq/σp∆yq 1.02 0.82 0.82 0.83 0.84
σp∆iq/σp∆yq 3.08 1.82 1.84 1.82 1.81
σp∆lq/σp∆yq 0.13 0.33 0.34 0.33 0.34

ρp∆c,∆yq 0.79 0.87 0.86 0.87 0.86
ρp∆c,∆iq 0.55 0.53 0.52 0.52 0.51
ρp∆l,∆yq -0.01 0.58 0.57 0.56 0.55
ρp∆i,∆lq 0.08 0.89 0.89 0.89 0.89

TEMPERATURE

Epzq 9.74 9.74 9.74 9.74 9.75
σpzq 0.60 0.60 0.60 0.60 0.61
ρpθ,∆aq -0.18 -0.19 0.00 -0.10 0.00
ρpθ,∆yq -0.16 -0.16 0.00 -0.06 0.00

ASSET PRICES

ErRLEVex s 7.31 3.14 3.03 2.55 1.99
σpRLEVex q 19.78 5.09 4.94 4.64 4.17
ρpθ,RLEVex q -0.32 -0.13 0.00 0.07 0.32

Notes: This table reports the main moments for the benchmark calibration (specification [1]) and two other model specifications.
In model [2], we assume that volatility shocks to temperature do not affect long-run productivity growth, i.e., τθ � 0. In model
[3] and [4], by imposing ρpεx, εθq ¡ 0, temperature volatility shocks are assumed to be positively correlated with long-run

productivity shocks. The levered equity risk premium is defined as RLEVex � p1 � D
E
qpRt � Rft�1q where financial leverage is

imposed by assuming an average debt-to-equity ratio D
E

of 1 (see, e.g., Croce, 2014; Hitzemann et al., 2016). Models’ entries are
obtained from repetitions of small-sample simulations (i.e., averages over 1000 simulations of 100 years). Er�s, σp�q, ρp�, �q, and
AC1p�q denote mean, volatility, correlation, and first-order autocorrelation, respectively. Means and volatilities are expressed
in percentage points. Empirical moments are computed from annual data spanning the period 1950-2015. Additional details
on data are provided in Section 3.1.

quantities found in Figure 4 with a magnitude close to the empirical counterparts. So, modelling

temperature volatility shocks within a production economy with endogenous investment and labor

decisions represents the most natural choice.

As found in our VAR analysis, TV OL shocks also affect the financial sector. Impulse responses

for financial variables are shown in Figure 10. As unexpected increases in TV OL reduce pro-

ductivity, firms’ profits decline, which also has a negative effect on dividends. Due to the fall in

investment, the price of capital depreciates, which implies lower stock market returns (Panel B)

and a contemporaneous increase in the stochastic discount factor (Panel E). The price dividend-

ratio increases following the shock (Panel D) because dividends decrease more than equity prices in

our model. As equity markets experience a contraction, the agent’s demand for risk-less securities

increases, producing a drop in the risk-free rate (Panel A). As the returns on the aggregate stock

28



Figure 9: Responses of macro quantities to a TV OL shock

Panel A: TV OLÑ ∆a Panel B: TV OLÑ ∆c Panel C: TV OLÑ ∆y
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Notes: This figure reports impulse response functions (expressed as percentage annual log-deviations from the steady state) for
a length of 10 years of TFP growth, ∆a, consumption growth, ∆c, output growth, ∆y, investment growth, ∆i, labor growth,
∆l, and labor productivity growth, ∆lp, with respect to a TV OL shock. Solid black lines: model-implied impulse responses.
Dashed black lines: average empirical impulse responses (i.e., average of the three different VAR models impulse responses
estimated and plotted in Figure B.4). All the parameters are calibrated to the values reported in Table 5.

market decreases more than the risk-free rate, the excess return declines as well (Panel C). This

also means that the equity market does not provide insurance against temperature volatility risk.

There is no positive excess return when the marginal utility of the agent is high, i.e. in a bad

state of the world. Therefore, temperature volatility risk is associated with increases in the equity

premium (see Table 6).

Correlated long-run macro and temperature volatility shocks: To capture possible adap-

tation to temperature volatility risk, we assume that long-run TFP shocks and TV OL shocks are

positively correlated. This may reflect increasing investment by agents in new technologies to shield

against higher temperature volatility, and this investment increases productivity. In specification

[3], we therefore set ρpεx, εθq � 0.5. The counter-cyclicality between the equity market return

and temperature volatility, i.e. ρpθ,RLEVex q   0, almost disappears, which decreases the overall

level of risk. As a result, the equity risk premium decreases by about 59 basis points, and equity

volatility decreases by 45 basis points compared to the benchmark scenario. In the extreme case

of specification [4] we assume a perfect correlation between temperature volatility shocks and long-
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Figure 10: Responses of financial variables to a temperature volatility shock
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Notes: This figure reports impulse response functions (expressed as percentage annual log-deviations from the steady state) for

a length of 10 years of the log of the price dividend ratio, logpp{dq, the pricing kernel, SDF , the equity market return, Rm, the

risk-free rate, Rf , and the excess return, Rex, with respect to a temperature volatility shock. All the parameters are calibrated

to the values reported in Table 5.

run productivity shocks, which represents the case where agents perfectly respond to increasing

temperature volatility by means of adaption efforts. This results in a sharp drop of the equity

premium. Now, the counter-cyclicality between TV OL and TFP actually turns into a pronounced

procyclicality of almost the same magnitude.

5.3 Welfare and Growth Effects of Temperature Volatility Risk

In the spirit of Bansal and Ochoa (2011b), we measure the economic costs of temperature volatility

risk by means of welfare compensation of a change in the level of temperature volatility. The welfare

compensation is expressed as a permanent change of agent’s lifetime utility relative to the economy

with no temperature volatility risk. Formally,

ErU0pp1 � ∆qC̃qs � ErU0pC̃�qs, (9)

where ∆ represents welfare-costs, and C̃ � tC̃tu8t�0 and C̃� � tC̃�
t u8t�0 denote the optimal con-

sumption paths with and without temperature volatility risk, respectively.
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Table 7 reports welfare costs for temperature volatility effects in the benchmark economy and for

the cases with positive correlation between TV OL shocks and long-run TFP shocks. In addition,

costs are calculated for two values of the intertemporal elasticity of substitution to check if our

results are qualitatively robust to whether the substitution effect or the income effect dominates.

The first case is represented by ψ ¡ 1, and more precisely, we use ψ � 2 as in the benchmark

specification. To let the income effect dominate we set ψ � 0.9.

In our benchmark calibration, welfare costs amount to 9.1% of per capita composite consump-

tion. This means that the bundle consisting of consumption and leisure of an agent living in an

economy with temperature volatility risk needs to be increased by 9.1% in every state and at every

point in time to give the agent the same utility as in an economy without temperature volatility risk.

Since TV OL shocks have a large and persistent effect on productivity and other macroeconomic

and financial variables, they produce sizeable welfare costs.

In the case where long-run TFP shocks are positively correlated with TV OL shocks (ρpεx, εθq ¡
0.5), welfare costs decrease substantially and become negative, which means that there are welfare

gains from temperature volatility risk. In specification [2] with a correlation coefficient of 0.5,

welfare costs decrease to -41.0%. We interpret the positive correlation between long-run TFP

shocks and TV OL shocks as adaptation by agents to temperature uncertainty. Therefore, increases

in temperature volatility that reduce TFP growth come with long-run macro shocks which in turn

increase TFP growth. This hedge decreases overall risk and welfare costs. In specification [3]

where we assume that long-run productivity shocks perfectly respond to temperature volatility

shocks with a correlation coefficient of 1, welfare gains from temperature volatility risk are higher

accordingly.18

In case of a lower value ψ � 0.9 of the IES, results change quantitatively, but not qualitatively.

With a lower IES the welfare loss in the benchmark case is about one third of the value for ψ � 2.

Welfare costs are decreasing in the IES, since a lower IES implicitly makes the agent less patient,

i.e., future consumption has a lower weight in the value function. This makes temperature volatility

risk as a source of long-run macroeconomic risk less costly for the agent.

Expected Losses: To quantify the long-term effects of TV OL increases, we calculate expected

changes in GDP and labor productivity growth for horizons from 1 to 50 years ahead after a

temporary positive shock to UK temperature volatility. More specifically, we compare the cumu-

18In this setting, we assume adaptation to be costless. In order to asses properly the benefits of adaptation, one
would need to take into account the costs of these measures. This is left for future research.
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Table 7: Welfare costs of temperature volatility risk

[1] [2] [3]
(τθ � �0.0285) (ρpεx, εθq � 0.5) (ρpεx, εθq � 1)

ψ (BC)

2.00 9.1% -41.0% -71.0%

0.90 3.0% -13.1% -29.3%

Notes: This table reports the welfare costs of temperature volatility shocks for two different IES values. Welfare costs are
defined as the percentage increase ∆ ¡ 0 in composite consumption (C̃) that the household should receive in every state and at
every point in time in order to be indifferent between living in an economy with full risk exposure (i.e., σz , σa, σx ¡ 0, , σθ ¡ 0)
and an economy with no temperature volatility risk. Temperature volatility risk is eliminated by imposing τθ � 0. Specification
[1] refers to the benchmark calibration (i.e., τθ � �0.0285) while specification [2]and [3] assume a positive correlation between
temperature volatility and long-run productivity shocks (i.e., ρpεx, εθq ¡ 0).

lative growth in an economy in which TV OL negatively affects TFP growth to cumulative growth

in an economy without TV OL effects. The shock sizes are one and two standard deviations of

temperature volatility changes, i.e., 0.14 and 0.28.

Panels A and B of Table 8 report results for output growth and labor productivity growth. A

single initial temperature volatility shock has a sizeable long-run negative impact on both variables

as it induces a long-lasting decline in productivity. Over a 50-year horizon, a one-standard deviation

shock decreases both cumulative output and labor productivity growth by about 0.95pp. A two-

standard deviation shock leads to a fall in cumulative output and labor productivity growth by

about 1.9pp each after half a century. Hence, increases in temperature volatility affects economic

activity negatively not only in the short but also in the long run by decreasing growth perspectives

for output and labor productivity.

Table 8: Long-run effects of temperature volatility shocks

Panel A:
°N
j�1 ∆yt�j �N �∆y�

Difference in expected output growth after a shock to U.S. temperature

Shock size 1Y 5Y 10Y 20Y 50Y

1 std. dev. σθ �0.29 �0.67 �0.73 �0.82 �0.94

2 std. dev. σθ -0.58 -1.33 -1.46 -1.64 -1.89

Panel B:
°N
j�1 ∆lpt�j �N �∆lp�

Difference in expected labor productivity growth after a shock to U.S. temperature

Shock size 1Y 5Y 10Y 20Y 50Y

1 std. dev. σθ -0.25 -0.67 -0.75 -0.83 -0.95

2 std. dev. σθ -0.49 -1.33 -1.50 -1.67 -1.90

Notes: This table reports the cumulative change in growth over 1, 5, 10, 20, and 50 years in percentage points after a temporary
temperature volatility shock. The cumulative growth in an economy without such a shock is compared to that in an economy

with shocks to temperature volatility zt. Specifically, we report
�°N

j�1 ∆yt�j

	
�N �∆y� and

�°N
j�1 ∆lpt�j

	
�N �∆lp� where

∆yt�j (∆lpt�j) is the log growth rate of total output (labor productivity), and ∆y� (∆lp�) is the steady state growth rate in
the economy without a shock (i.e., with σz � 0). For example, the entry xy for a horizon of 5 years in the first row of Panel
A means that cumulative growth over these 5 years has been xy percentage points higher than it would have been without the
temperature volatility shock. The amount of lost output (Panel A) and labor productivity (Panel B) growth is reported for
temperature volatility shocks amounting to one and two standard deviations, i.e., to 0.14 and 0.28, respectively.
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5.4 Temperature Volatility and Capital Depreciation

Global climate is projected to continue to change. The effects on the environment of the unstable

climate are well known and – based on scientists views – are expected to become even stronger. In

particular, temperatures will keep rising, the frost-free season (and growing season) will lengthen,

hurricanes will become stronger, more intense and more frequent, and there will be further changes

in precipitation patterns in the sense of more droughts and heat waves. More volatile climate

conditions are therefore associated with stronger and more frequent extreme weather events. As

a result, we should also expect stronger adverse effects of volatility in climate drivers on real

economic activity (see Figure 1). Benson and Clay (2004) argue that one of the channels through

which natural disasters affect the macroeconomy is the destruction of the stock of capital. Based

on these expectations and existing evidence, it is most likely that the increasing number of extreme

weather events – induced by unusual weather dynamics – will exacerbate the process through which

capital depreciates. In the spirit of Furlanetto and Seneca (2014), we account for a direct effect of

temperature volatility (i.e., our climate change-related variable) on the capital stock by assuming a

stochastic depreciation rate of capital. More importantly, we assume TV OL and depreciation rate

shocks to be positively correlated. This is to stress the fact that innovations to temperature level

variations exacerbate the overall effects of climate change and destroy capital more rapidly.

Formally, in the presence of a stochastic deprecation rate, the dynamic equation for capital

reads:

Kt�1 � p1 � δK,tqKt �G
� It
Kt

	
Kt,

where

δK,t � eζtδK , (10)

ζt � ρkζt�1 � εk,t. (11)

Unexpected changes in the depreciation rate are represented by the shock term εk, and ρk measures

the persistence of a depreciation shock. Time-varying capital depreciation helps to explain the high

volatility of investment observed in the data. We calibrate the standard deviation of depreciation

shocks to obtain an investment volatility of 6%, which is close to the data, and set ρk to 0.85.

The main results produced by the new benchmark calibration featuring depreciation risk (BC)
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are reported in Table 9, specification [1]. Compared to an economy without depreciation risk

(specification [2]), investment volatility significantly increases up to 6%, but this comes at the cost

of an increasing volatility in labor and output. Due to higher risk, the equity premium increases

by 127 basis points relative to the case with no depreciation shocks.

Table 9: Model vs (UK) data: Macroeconomic quantities and asset prices

Variable Data BC σk � 0 ρpεk, εθq � 0.3 ρpεk, εθq � 1

[1] [2] [3] [4]

MACRO QUANTITIES

Ep∆aq 1.44 1.43 1.44 1.43 1.43

AC1p∆aq 0.25 0.12 0.12 0.12 0.12

σp∆yq 2.02 2.96 2.06 2.99 3.04
σp∆iq 6.21 5.94 3.85 5.94 5.85

σp∆lq 0.26 1.15 0.74 1.15 1.13

σp∆cq/σp∆yq 1.02 0.79 0.83 0.80 0.83
σp∆iq/σp∆yq 3.08 2.02 1.87 2.00 1.93
σp∆lq/σp∆yq 0.13 0.39 0.36 0.39 0.37

ρp∆c,∆yq 0.79 0.80 0.84 0.81 0.83
ρp∆c,∆iq 0.55 0.42 0.46 0.42 0.43
ρp∆l,∆yq -0.01 0.61 0.56 0.60 0.56
ρp∆i,∆lq 0.08 0.92 0.90 0.91 0.90

TEMPERATURE

Epzq 9.74 9.74 9.74 9.74 9.74
σpzq 0.60 0.61 0.60 0.61 0.61
ρpθ,∆aq -0.18 -0.19 -0.20 -0.19 -0.19
ρpθ,∆yq -0.16 -0.11 -0.17 -0.21 -0.46

ASSET PRICES

ErRLEVex s 7.31 5.65 4.29 5.75 6.00
σpRLEVex q 19.78 7.51 7.04 7.45 7.30
ρpθ,RLEVex q -0.32 -0.12 -0.14 -0.05 0.14

Notes: This table reports the main moments for the benchmark calibration (specification [1]) and two other model specifications.
In model [2], we shut down risk to the depreciation rate of capital, σk � 0. In model [3] and [4], by imposing ρpεk, εθq ¡ 0,
temperature volatility shocks are assumed to be positively correlated with depreciation shocks. The levered equity risk premium

is defined as RLEVex � p1� D
E
qpRt�R

f
t�1q where financial leverage is imposed by assuming an average debt-to-equity ratio D

E
of

1 (see, e.g., Croce, 2014; Hitzemann et al., 2016). Models’ entries are obtained from repetitions of small-sample simulations (i.e.,
averages over 1000 simulations of 100 years). Er�s, σp�q, ρp�, �q, and AC1p�q denote mean, volatility, correlation, and first-order
autocorrelation, respectively. Means and volatilities are expressed in percentage points. Empirical moments are computed from
annual data spanning the period 1950-2015. Additional details on data are provided in Section 3.1.

As pointed out in the beginning of this section, innovations to temperature level variations may

exacerbate the overall effects of climate change and destroy capital via the increasing probability

of natural disasters. To account for this effect, specifications [3] and [4] assume that temperature

volatility shocks and depreciation shocks are positively correlated. Although this assumption re-

duces the counter-cyclicality of TV OL and the excess return, the equity risk premium increases.

To understand this finding it is helpful to look at welfare costs of temperature volatility risk in the

presence of stochastic depreciation of capital. The results of this analysis are displayed in Table
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10. When TV OL shocks and depreciation shocks are uncorrelated (specification [1]), welfare costs

of temperature volatility risk are not much affected compared to Table 7. Introducing a positive

correlation between temperature volatility shocks and depreciation shocks (specifications [2] and

[3]) increases welfare costs, and this effect is the stronger the higher the correlation. This results

from the fact that depreciation risk exacerbates TV OL risk. On the one hand, increasing tem-

perature volatility has a negative effect on TFP growth, which reduces output and consumption.

On the other hand, higher temperature volatility increases the depreciation rate, which decreases

the capital stock. This has negative effects on production as well, which amplifies the response

of consumption. Welfare costs of TV OL risk increase, as the overall volatility of consumption

goes up substantially. The higher the positive correlation between temperature volatility risk and

depreciation risk, the stronger is the amplification effect, which increases welfare costs further.

Table 10: Welfare costs of temperature volatility risk

[1] [2] [3]
(τθ � �0.0215) (ρpεk, εθq � 0.3) (ρpεk, εθq � 1)

ψ (BC)

2.00 8.6% 9.7% 11.5%

0.90 3.0% 3.9% 5.4%

Notes: This table reports the welfare costs of temperature volatility shocks for two different IES values in the presence of
stochastic depreciation rate of capital. Welfare costs are defined as the percentage increase ∆ ¡ 0 in composite consumption
(C̃) that the household should receive in every state and at every point in time in order to be indifferent between living in an
economy with full risk exposure (i.e., σz , σa, σx ¡ 0, σk ¡ 0, σθ ¡ 0) and an economy where temperature volatility risk is shut
down. Temperature volatility risk is eliminated by imposing τθ � 0. Specification [1] refers to the benchmark calibration (i.e.,
τθ � �0.0215) while specification [2] and [3] assume a positive correlation between temperature volatility and depreciation rate
shocks (i.e., ρpεk, εθq ¡ 0).

6 Evidence from an Endowment Economy

Using empirical evidence from a bi-variate VAR suggesting that a global temperature shock has a

negative effect on consumption growth, Bansal and Ochoa (2011b) develop an endowment economy

featuring long-run consumption and temperature risk to compute the welfare costs associated to

rising temperatures. In a similar spirit to theirs, we first check whether there is a direct relationship

between consumption growth and TV OL. The GC test suggests the presence of a negative and

significant effect of TV OL on consumption growth for the period 1950-2015 (see Table 11).

A bi-variate VAR impulse response analysis shows that, two and three years after it occurs,

a TV OL shock produces a drop in consumption growth of (approx) 0.4pp. This effect lasts for

almost six years (see Figure 11). Based on this empirical evidence, we can account for the direct
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Table 11: Granger causality: Consumption growth vs. temperature volatility.

Period 1831-1900 1900-1950 1950-2015
TV OLÑ ∆c 0.609 (+) 0.997 (+) 0.092� (–)
∆cÑ TV OL 0.566 (+) 0.355 (+) 0.762 (–)

Notes: p-values for the bootstrap test statistics are reported. �� and � denote significance, respectively at the 1 and
5% significance level. The sign of the causality is reported in parentheses. The number of lags is two and it is chosen
using Akaike information criterion.

effect of TV OL shocks on consumption growth in the spirit of Bansal and Ochoa (2011b) and thus

test whether TV OL risk still produces non-negligible welfare costs once we abstract from capital

and labor decisions. We view this robustness check as a pure quantitative exercise to examine the

sensitivity of our results to a different modeling choice. The model is briefly outlined here below.

Figure 11: Impulse-responses of consumption growth (∆C) to temperature volatility (TV OL) shocks.

Panel A: TV OLñ ∆C (1900-1950) Panel B: TV OLñ ∆C (1950-2015)
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Notes: This figure depicts generalized impulse response functions of consumption growth (∆C) to a one-standard-
deviation shock in temperature volatility (TV OL). The impulse-response functions (IRFs) are obtained by estimating
a bi-variate VAR(2) with a constant. Solid “black” lines: IRFs. Dashed “dark grey” line: 90% confidence bands.
Dashed “light grey” line: 68% confidence bands.

The representative household is equipped with recursive preferences, as in Epstein and Zin

(1989):

Ut �
�
p1 � βqC̃1� 1

ψ

t � β
�
EtrU1�γ

t�1 s
	 1�1{ψ

1�γ
� 1

1�1{ψ
. (12)

The intertemporal budget constraint is:

Wt�1 � pWt � CtqRc,t�1, (13)

and the log SDF is:

mt�1 � θLogpδq � θ

ψ
∆pCt�1q � pθ � 1qrc,t�1, (14)
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where θ � 1�γ
1� 1

ψ

.

Consumption growth and temperature dynamics are represented by the following system

∆ct�1 � µc � xt � xzt � σcεc,t�1

xt � ρxxt�1 � σxεx,t

xzt � ρzxx
z
t�1 � τzσzεz,t � τθσθεθ,t�1

zt�1 � µz � ρzpzt � µzq � eθt�1σzεz,t�1

θt�1 � ρθθt � σθεθ,t�1,

(15)

where the shocks εc,t�1, εx,t, εθ,t�1 and εz,t�1 are independent of each other and are each distributed

i.i.d. standard normally. The unconditional expected growth rate of consumption is µc. In this

economy, short-run consumption shocks are induced by εc,t, whereas εx,t, εθ,t, and εz,t indicate long-

run shocks affecting the persistent stochastic components in consumption growth xt and xzt . The

persistence of long-run consumption and temperature-related productivity shocks is measured by

ρx and ρzx, respectively. In this framework, the two distinct long-run components for consumption

and temperature shocks feature the same timing of those innovations. As for long-run consumption

shocks, temperature related shocks impact consumption growth with one lag, as suggested by the

data.

To calibrate the model we again rely on the bi-variate VAR estimation results and set the

parameters to match the consumption dynamics from the data (i.e., consumption growth volatility).

The effect of a TV OL shock on consumption growth is depicted in Figure 11. It is rather persistent

and leads to a drop in consumption growth by more than 0.4pp after three years. We therefore

assume in the model that a TV OL shock has a lagged effect on consumption growth. By imposing

τθ = -0.218 and ρzx = 0.6, we let the endowment economy produce a drop of 0.4pp in consumption

growth following a TV OL shock. As suggested by our bivariate analysis, the negative impact of

consumption growth produced by the model lasts for several years.19 The standard parameters β,

γ, and ψ are taken from Bansal and Ochoa (2011b) and are set to 0.988, 10, and 1.5 respectively.

Except for the IES, these are also the values used in our production framework. The parameters

governing the consumption process, µc and σc, are calibrated to match the unconditional mean

and volatility of consumption growth, which implies values of 0.0256 and 0.02, respectively. Since

consumption growth exhibits a high autocorrelation in the data (0.47), we set the persistence of

19For space consideration, the model-implied impulse response of consumption growth to a TV OL shock is not
reported but is available from the authors upon request.
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long-run consumption shocks εx to a high value of 0.99. The standard deviation of these long-run

shocks, σx, is assumed to be a small fraction of the volatility of short-run consumption shocks, i.e.

σx � 0.044 � σc as in Bansal and Yaron (2004). Naturally, the parameters governing the evolution

of UK temperature remain as in Section 5.

Simulated moments and welfare costs are displayed in Table 12. As in the data, our benchmark

endowment economy featuring TV OL effects (specification [1]) produces a negative correlation

between TV OL and both consumption growth and the equity market return. Compared to an

economy with no TV OL effects (specification [2]), this additional source of risk produces a small

equity risk premium of 3bps. On the other hand, it entails sizeable welfare costs. These amount

to 13% of lifetime consumption and are comparable with the magnitude found in our production

economy. Note that in this endowment economy, welfare costs are higher as we match the volatility

of consumption growth which is larger compared to the one obtained in our production economy

framework. This robustness test shows that the substantial welfare costs from TV OL risk are still

obtained when modelling the interaction between consumption and temperature dynamics in an

endowment economy that abstracts from labor and investment decisions.

Table 12: Model vs (UK) data: Macroeconomic quantities, asset prices, and welfare

Variable Data BC τθ � 0

[1] [2]

MACRO QUANTITIES

Ep∆cq 2.56 2.57 2.57
σp∆cq 2.05 2.08 2.02

TEMPERATURE

Epzq 9.74 9.75 9.75
σpzq 0.60 0.63 0.63
ρpθ,∆cq -0.09 -0.17 0.00

ASSET PRICES

EpRLEVex q 7.31 1.71 1.68
σpRLEVex q 19.78 2.96 2.94
ρpθ,RLEVex q -0.32 -0.06 0.00

WELFARE

LOGpU{Cq - -2.29 -2.16
∆ - 13.2% -

Notes: This table reports the main moments for the benchmark “endowment economy” calibration (specification [1]) and the
endowment economy with no temp-vol risk. (specification [2]). Models’ entries are obtained from repetitions of small-sample
simulations (i.e., averages over 1000 simulations of 100 years). Er�s, σp�q, ρp�, �q, and AC1p�q denote mean, volatility, correlation,
and first-order autocorrelation, respectively. Means and volatilities are expressed in percentage points. Empirical moments are
computed from annual data spanning the period 1950-2015. Additional details on data are provided in Section 3.1.
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7 Concluding Remarks

We show novel empirical evidence that increasing uncertainty about temperature variations (i.e.,

temperature volatility) negatively (positively) affects aggregate productivity, economic activity, and

asset valuations in the UK after (before) 1950. We further show that temperature volatility risk

has carried a positive risk premium in the UK equity market over the past decades. In summary,

our novel evidence suggests that the adverse effects of climate change belong to the post-war era.

We suggest a model for a production economy featuring long-run macro and temperature volatil-

ity risk to explain these empirical findings. In the model temperature volatility shocks (i) dampen

productivity growth, the growth rate of key macro-aggregates, and equity valuations and (ii) com-

mand a positive risk premium, consistent with post-war UK data. Our model is then used to

quantify the temperature volatility-related adverse effects on expected growth and welfare. The

associated welfare costs are substantial, and positive temperature volatility shocks reduce long-run

growth prospects. When temperature volatility shocks are associated with faster depreciation of

capital (through increasing occurrence of natural disasters), welfare costs are exacerbated. How-

ever, if the economy immediately reacts to changes in temperature volatility by means of long-run

technology improvements, such costs can be totally offset or at least mitigated.
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A Empirical Methodology

In this section we briefly describe the methodology employed to examine the relationship between
temperature volatility, aggregate productivity, macro quantities (such as output, consumption, and
investment), and financial variables. In Section A.1, we first introduce the Granger Causality (GC)
test which we use to examine the causality between TFP growth and temperature volatility over
the period 1800-2015. In Section A.2, we review the “generalized” VAR framework as proposed by
Pesaran and Shin (1998). A generalized approach is used to obtain impulse responses of macroeco-
nomic and financial aggregates that do not depend on the ordering of the variables in the system.
This property is important for our analysis given that the there is uncertainty about the true
causal ordering of the variables. Moreover, for robustness purposes, we describe the local projec-
tions methodology of Jordà (2005) and Jordà (2009), which does not require the specification of a
multivariate dynamic system and is robust to a potential misspecification of the data generating
process.

A.1 Granger Causality test

A time series variable x is said to Granger-cause a time series variable y, if y can be better predicted
using the past values of both x and y than by just using the past values of y alone. Tests of Granger
Causality (GC) can be based on a vector autoregressive model, a multivariate MA-representation,
or an OLS regression.20 In this paper we choose the last approach.21 The test is performed by
regressing (separately) each variable on lagged values of itself and the other:

yt � β0 �
p̧

i�1

βiyt�i �
p̧

i�1

γixt�i � ut

xt � β0 �
p̧

i�1

βixt�i �
p̧

i�1

γiyt�i � ut

The simple F -test is used to examine the null hypothesis H0 : γ1 � γ2 � � � � � γp � 0. A rejection
of the null hypothesis implies the presence of GC. Obviously, all variables have to be stationary to
avoid “spurious” results. The choice of lag length p is important for this test, and we determine the
appropriate maximum lag length for the variables using the Schwartz Information Criterion (SIC).
To get time-varying estimates, we search for causality over different sub-periods using the modified
bootstrap test suggested by Balcilar et al. (2010, 2014). As demonstrated for example by Mantalos
et al. (2000), the residual-based bootstrap method improves the critical values and the true size of
the test.

A.2 Generalized Impulse Response Functions

Consider the m-dimensional VAR(p) model:

yt �
p̧

i�1

Φiyt�1 � εt, (A.1)

20See Hamilton (1994) for a review of such tests.
21We also checked the GC results running a VAR and the results are very similar to the regressions.
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where εt is an iid error term with zero mean and covariance matrix Σ. Assuming weak stationarity,
yt can be rewritten via an infinite moving average representation:

yt �
8̧

i�0

Aiεt�i, (A.2)

where the m�m coefficient matrix Ai is obtained using the following recursive relation:

Ai � Φ1Ai�1 � Φ2Ai�2 � � � � � ΦpAi�p, i � 1, 2, � � � (A.3)

Let Ωt�1 denote the information set available at the beginning of time t. Then Pesaran and Shin
(1998) define the generalized impulse response function (GIRF) of yt to the shock δi at horizon n
as

GIRFypn, δi,Ωt�1q � Epyt�n|εit � δi,Ωt�1q � Epyt�n|Ωt�1q, (A.4)

where Ωt�1 and δi represent the information set and the shock to the ith equation that the ex-
pectations are conditioned on, respectively. Ωt�1 consists of the matrix of initial values needed
to compute the conditional expectations in (A.4).22 Assuming that εt has a multivariate normal
distribution, we have

Epεt|εit � δiq � pσ1i, σ2i, � � � , σmiq1σ�1
ii δi � Σeiσ

�1
ii δi, (A.5)

where ei is an m� 1 selection vector with the ith element equal to 1 and all other elements equal
to 0. The m� 1 vector of the unscaled and scaled GIRF are given by�

AnΣei?
σii


�
δi?
σii



, n � 0, 1, 2, � � � (A.6)

Ψg
i pnq � σ

� 1
2

ii AnΣei, n � 0, 1, 2, � � � , (A.7)

where (A.7) is obtained from (A.6) by setting δi � ?
σii. Central to the GIRF is δ, the hypothesized

vector of shocks δi for i � 1, ..., p. When one variable is shocked, other variables also vary as implied
by the matrix structure of covariances in the system. The impulse responses emerging from the
GIRF are unique and invariant to the ordering of the variables of the system (Pesaran and Shin,
1998).

A.3 Local projection impulse response function

Jordà (2005) suggests to estimate impulse response functions (IRFs) without prior recourse to
an auxiliary VAR model. The author applies insights from the forecasting literature to the is-
sue of estimating IRFs. Jordà (2005) proposes to project yt�n onto a linear space generated by
pyt�1, � � � , yt�pq1 to estimate the local projection impulse response function (LPIRF) of yt�n to a
shock δi as

yt�n � αn � Pn1 yt � � � � � Pnp yt�p�1 � ut�h, n � 1, � � � , H; P 0
1 � I. (A.8)

22In our analysis, for robustness check, we estimate also a Bayesian VAR (BVAR) using the Minnesota prior.
Using the Bayesian approach, we compute the generalized impulse responses simply by averaging out the history
uncertainties, future uncertainties, and parametric uncertainties.
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By construction, Pn1 can be interpreted as the response of yt�n to a reduced-form disturbance in
period t:

LPIRFypn, δiq � Pn1 � Epyt�n|ei � δi, yt, � � � , yt�pq � Epyt�n|yt, � � � , yt�pq, n � 1, � � � , H. (A.9)

Note that when the data generating process is the VAR model in (A.1), the impulse responses
calculated by local projections are equivalent to the impulse responses obtained with VAR. Further
details on this point can be found in Jordà (2005).

B Robustness Tests

B.1 Cholesky Identification

Figure B.1: Impulse response of macro-variables to TV OL shocks (1950-2015): Cholesky Identifica-

tion.
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Notes: This figure depicts orthogonalized impulse responses of TFP growth (∆a), labor growth (∆L), consumption
growth (∆C), investment growth (∆I), and output growth (∆Y ) to a one-standard-deviation shock in temperature
volatility (TV OL). The orthogonalization is performed via a Cholesky decomposition. Impulse-response are obtained
by estimating a VAR(1) with the six variables (in this order): TV OL, ∆a, ∆I, ∆C, ∆Y , ∆L, and a constant. Solid
“black” lines: IRFs. Dashed “dark grey” line: 90% confidence bands. Dashed “light grey” line: 68% confidence
bands.
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B.2 Different VAR models

Figure B.2: Impulse-responses of TFP growth to TV OL shocks: Evidence from three different VAR

models

Panel A: TV OLñ ∆a (1800-1900) Panel B: TV OLñ ∆a (1900-1950) Panel C: TV OLñ ∆a (1950-2015)
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Notes: This figure depicts generalized impulse response functions (IRFs) of TFP growth (∆a) to a one-standard-
deviation shock in temperature volatility (TV OL). Solid black line: IRFs of VAR with two lags (VAR(2)). Dark
gray line with circles: IRFs of Bayesian VAR (BVAR), estimated using Minnesota prior, with one lag. Light gray line
with squares: local projection IRFs (LPIRF) with lag length determined by the Akaike Information Criterion (AIC),
assuming a maximum lag length of 2. All estimations include a constant. Three different periods are considered: (i)
1800-1900 (PANEL A); (ii) 1900-1950 (PANEL B); (iii) 1950-2015 (PANEL C).

Figure B.3: Impulse-responses of macro-variables to TV OL shocks (1900-1950): Evidence from three

different VAR models
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Notes: This figure depicts generalized impulse response functions (IRFs) for TFP growth (∆a), labor growth (∆L),
consumption growth (∆C), investment growth (∆I), and output growth (∆Y ) with respect to a one-standard-
deviation shock in temperature volatility (TV OL). Solid black line: IRFs of VAR with two lags (VAR(2)). Dark
grey line with circles: IRFs of Bayesian VAR (BVAR), estimated using Minnesota prior, with one lag. Light grey
line with squares: local projection IRFs (LPIRF) with lag length determined by the Akaike Information Criterion
(AIC), assuming a maximum lag length of 2. All estimations include a constant.
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Figure B.4: Impulse-responses of macro-variables to TV OL shocks (1950-2015): Evidence from three

different VAR models.
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-.005

-.004

-.003

-.002

-.001

.000

.001

.002

.003

.004

1 2 3 4 5 6 7 8 9 10

VAR(2)

BVAR

LOC-PR

-.0004

-.0003

-.0002

-.0001

.0000

.0001

1 2 3 4 5 6 7 8 9 10

VAR(2)

BVAR

LOC-PR

-.006

-.005

-.004

-.003

-.002

-.001

.000

.001

.002

.003

1 2 3 4 5 6 7 8 9 10

VAR(2)

BVAR

LOC-PR

Panel D: TV OLñ ∆I Panel E: TV OLñ ∆Y

-.024

-.020

-.016

-.012

-.008

-.004

.000

.004

.008

1 2 3 4 5 6 7 8 9 10

VAR(2)

BVAR

LOC-PR

-.007

-.006

-.005

-.004

-.003

-.002

-.001

.000

.001

.002

1 2 3 4 5 6 7 8 9 10

VAR(2)

BVAR

LOC-PR

Notes: This figure depicts generalized impulse response functions (IRFs) for TFP growth (∆a), labor growth (∆L),
consumption growth (∆C), investment growth (∆I), and output growth (∆Y ) with respect to a one-standard-
deviation shock in temperature volatility (TV OL). Solid black line: IRFs of VAR with two lags (VAR(2)). Dark
grey line with circles: IRFs of Bayesian VAR (BVAR), estimated using Minnesota prior, with one lag. Light grey
line with squares: local projection IRFs (LPIRF) with lag length determined by the Akaike Information Criterion
(AIC), assuming a maximum lag length of 2. All estimations include a constant.

Figure B.5: Impulse-responses of the risk-free rate (Rf ) and the equity return (R) to TV OL shocks:

Evidence from three different VAR models.

Panel A: TV OLñ Rf (1950-2015) Panel B: TV OLñ R (1950-2015)
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Notes: This figure depicts generalized impulse response functions for the risk-free rate (Rf ) and the equity return
(R) to a one-standard-deviation shock in temperature volatility (TV OL). Solid black line: IRFs of VAR with two
lags (VAR(2)). Dark grey line with circles: IRFs of Bayesian VAR (BVAR), estimated using Minnesota prior, with
one lag. Light grey line with squares: local projection IRFs (LPIRF) with lag length determined by the Akaike
Information Criterion (AIC), assuming a maximum lag length of 2. All estimations include a constant.
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B.3 “Time-Varying” VAR

Figure B.6: Rolling Impulse-Responses of TFP growth (∆a) to TV OL shocks
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Notes: This figure depicts generalized impulse response functions for TFP growth (∆a) with respect to a one-
standard-deviation shock in temperature volatility (TV OL). The IRFs are obtained estimating a Bayesian VAR
with Minnesota prior and one lag in a rolling window scheme. Using a rolling window of 50 observations (years),
each period an IRF is obtained and averaged over 20 years (Panel A). In Panel B, instead, all IRFs obtained in each
window are plotted against the years and time-horizon (10 periods) of IRFs.

B.4 A Different Proxy for Temperature Volatility: Inter-Annual TVOL

Figure B.7: Impulse-responses of TFP growth (∆a) to a Temp-Vol Shock: Inter-Annual Temperature

Volatility (TV OLi)

Panel A: TV OLi ñ ∆a (1950-2015, 10-year rolling window) Panel B: TV OLi ñ ∆a (1950-2015, 15-year rolling window)
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Notes: This figure depicts generalized impulse responses of TFP growth (∆a) to a one-standard-deviation shock in
inter-annual temperature volatility (TV OLi). TV OLit � |σtpnq � σ̄1659�1759|, for t � 1950, ..., 2015, where σtpnq
represents the standard deviation computed using a rolling window of length n years, and σ̄1659�1759 is the average
inter-annual standard deviation observed in the pre-industrial revolution period. n is equal to 10 (Panel A) and 15
(Panel B). Solid “black” lines: IRFs. Dashed “dark grey” line: 90% confidence bands. Dashed “light grey” line: 68%
confidence bands.

49



B.5 Rainfall Volatility

Figure B.8: Impulse-responses of TFP growth (∆a) to a rainfall volatility (RV OL) shock.

Panel A: RV OLñ ∆a (1900-1950) Panel B: RV OLñ ∆a (1950-2015)
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Notes: This figure depicts generalized impulse response of TFP growth (∆a) to a one-standard-deviation shock
in rainfalls volatility (RV OL). Rainfalls volatility is represented by the intra-annual volatility, computed in each
year as standard deviation of monthly observations. Monthly rainfall observations are collected from several cli-
mate stations operating in UK for the period 1900-2015 (Source: https://www.metoffice.gov.uk/public/weather/
climate-historic). To minimize contamination by local meteorological and instrumental conditions, we amalga-
mate all independent stations into one single average rainfall series. Impulse-responses are obtained by estimating
a bi-variate VAR(1). A constant is included. Solid “black” lines: IRFs. Dashed “dark grey” line: 90% confidence
bands. Dashed “light grey” line: 68% confidence bands.

B.6 Controlling for equity market dynamics

Figure B.9: Impulse-responses of TFP growth (∆a) and equity return (R) to TV OL shocks

Panel A: TV OLñ ∆a (1950-2015) Panel B: TV OLñ R (1950-2015)
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Notes: This figure depicts generalized impulse response functions (GIRFs) of TFP growth (∆a) and the equity
return (R) with respect to a one-standard-deviation shock in temperature volatility (TV OL). Impulse-responses are
obtained by estimating a tri-variate VAR(1) with a constant. Solid “black” lines: IRFs. Dashed “dark grey” line:
90% confidence bands. Dashed “light grey” line: 68% confidence bands.
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C Additional Cross-Sectional Tests

Table C.1: Risk Premium of Temp-Vol Shocks: Pre-2007

Panel A: Risk Premia
Fama-McBeth Intercept λ∆TV OL

UK12 18.720 0.455
[5.886] [1.486]

UK40 13.917 0.186
[4.600] [1.257]

EU100 14.573 0.125
[3.420] [0.581]

Panel B: Risk Premia
Avg Returns Intercept λ∆TV OL

UK12 18.720 0.455
[16.356] [5.123]

UK40 13.917 0.186
[14.042] [2.048]

EU100 14.573 0.125
[36.574] [1.226]

Notes: This table reports the estimates of the temp-vol risk premium. Test assets are: (i) twelve UK portfolios (UK12) with
six portfolios formed on size and book-to-market and six portfolios formed on size and momentum (Source: Stefano Marmi’s
Data Library) (ii) 40 UK portfolios (40UK) with 10 portfolios formed on price-earnings, 10 portfolios formed on price to book,
10 portfolios formed on price to cash flow, and 10 portfolios formed on gross profit margin (Source: Stefano Marmi’s Data
Library) (iii) 100 EU portfolios (100EU) with 25 portfolios formed on size and book-to-market, 25 portfolios formed on size and
operating profitability, 25 portfolios formed on size and investment, and 25 portfolios formed on size and momentum (Source:
Kenneth R. French’s Data Library). Data on UK (EU) portfolios run from 1989 (1991) to 2007. The t-statistics in square
brackets for the risk premium are adjusted for autocorrelation and heteroskedasticity following Newey and West (1987).

Table C.2: Risk Premium of Temp-Vol Shocks (GREAT RECESSION)

Panel A: Risk Premia
Fama-McBeth Intercept λ∆mkt λ∆a λGR λ∆TV OL

UK12 7.185 3.623 -0.090 -0.159 0.518
[0.810] [0.380] [-0.325] [-1.139] [2.315]

UK40 8.043 3.392 0.287 -0.158 0.137
[2.641] [0.635] [0.926] [-1.563] [1.060]

EU100 1.168 9.256 0.689 -0.338 0.261
[0.215] [1.364] [2.522] [-2.794] [1.610]

Panel B: Risk Premia
Avg Returns Intercept λ∆mkt λ∆a λGR λ∆TV OL

UK12 7.185 3.623 -0.090 -0.159 0.518
[1.413] [0.850] [-0.517] [-2.411] [2.832]

UK40 8.043 3.392 0.287 -0.158 0.137
[5.101] [2.028] [1.936] [-2.371] [1.995]

EU100 1.168 9.256 0.689 -0.338 0.261
[0.236] [1.989] [3.180] [-3.644] [2.473]

Notes: This table reports the estimates of the temp-vol risk premium. Test assets are: (i) twelve UK portfolios (UK12) with
six portfolios formed on size and book-to-market and six portfolios formed on size and momentum (Source: Stefano Marmi’s
Data Library) (ii) 40 UK portfolios (40UK) with 10 portfolios formed on price-earnings, 10 portfolios formed on price to book,
10 portfolios formed on price to cash flow, and 10 portfolios formed on gross profit margin (Source: Stefano Marmi’s Data
Library) (iii) 100 EU portfolios (100EU) with 25 portfolios formed on size and book-to-market, 25 portfolios formed on size and
operating profitability, 25 portfolios formed on size and investment, and 25 portfolios formed on size and momentum (Source:
Kenneth R. French’s Data Library). GR represents a dummy for the 2008-2009 Great Recession. Data on UK (EU) portfolios
run from 1989 (1991) to 2016. The t-statistics in square brackets for the risk premium are adjusted for autocorrelation and
heteroskedasticity following Newey and West (1987).
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