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Abstract

People are exposed to a constant flow of information about economic, social and po-

litical phenomena; nevertheless, misinformation is ubiquitous in the society. This paper

studies the spread of misinformation in a social environment where agents receive new in-

formation each period and update their opinions taking into account both their experience

and neighborhood’s ones. I consider two types of misinformation: permanent and tempo-

rary. Permanent misinformation is modeled with the presence of stubborn agents in the

network and produces long-run effects on the agents learning process. The distortion in-

duced by stubborn agents in social learning depends on the “updating centrality”, a novel

centrality measure that identifies the key agents of a social learning process, and gen-

eralizes the Katz-Bonacich measure. Conversely, temporary misinformation, represented

by shocks of rumors or fake news, has only short-run effects on the opinion dynamics.

Results rely on spectral graph theory and show that the consensus among agents is not

always a sign of successful learning. In particular, the consensus time is increasing with

respect to the “bottleneckedness” of the underlying network, while the learning time is

decreasing with respect to agents’ reliance on their private signals.

Journal of Economic Literature Classification Numbers: D83, D85, D72, Z10

Keywords: Opinion Dynamics in Networks, Non-Bayesian Social Learning, Stubborn

Agents, Speed of Convergence

∗I am grateful to Paolo Pin for his invaluable help and guidance throughout this project. I also thank
Kostas Bimpikis, Sergio Currarini, Pietro Dindo, Edoardo Gallo, Francesco Nava, Fabrizio Panebianco, Simon
Weidenholzer, Thierry Verdier, and conferences participants at ASSET 2018 and NETEF 2018, for useful
comments and discussions. All errors are mine. I gratefully acknowledge the hospitality of Bocconi University,
where this project was developed.
†Department of Economics, Ca’ Foscari University of Venice. E-mail: sebastiano.dellalena@unive.it



1 Introduction

People form their beliefs and opinions about political, economic and social issues through

the information they have. Nowadays, each person is exposed to a continuous stream of

news about almost every subject. However, since no one has direct access to “the truth”

and different pieces of information are dispersed among agents, people interact together

and update their beliefs taking into account those of others. Moreover, agents tend to

take in consideration others’ belief to conform to their peers, or to some role models in

society, even if they do not have better information. There is evidence, in fact, that peo-

ple’s opinions and decisions are affected by friends, neighbors or even influencers, such as

sports celebrities, fashion bloggers, political leaders or commentators.1

Social media play a fundamental role in the agent’s social learning; nowadays, 62% of

US adults use them as a source of news (Gottfried and Shearer, 2016). Social media, like

Facebook and Twitter, allow agents to receive and share a lot of information in a very

short time and to have easy access to other’s opinions. This, despite leading to faster

dissemination of news and faster social learning, leaves the door open to the spread of

fake-news and misinformation or, in general, opinion manipulation (Del Vicario et al.,

2016).

This paper considers important questions about social learning when agents receive a

constant flow of information. Do social learning leads to a consensus among different

individuals? Are agents able to effectively aggregate dispersed information about the

underlying state of the world? How much room is there for belief manipulation and

misinformation? Despite a large amount of data about economic, social and political

phenomena disagreements are ubiquitous in society (Acemoglu and Ozdaglar, 2011). For

example, people tend to disagree on many phenomena such as climate change, the effect of

a flat tax or the guaranteed minimum income on the society, the effect of LGBT adoptions

on the offsprings’ nurture, or even the genuineness of the first moon landing. Therefore,

we can deduce how consensus and learning are not always reached and there is room for

indoctrination and the spread of misinformation. Moreover, since the consensus is a nec-

essary but not sufficient condition for learning to take place, there is reason to wonder if

social environments that guarantee a faster consensus would lead also to a faster learning.2

1 For example, Coleman et al. (1966) discusses the role of doctors in prescription of new drugs, Reingen
et al. (1984), Feick and Price (1987) and Godes and Mayzlin (2004) study the role of influencer marketing in
brand choice by consumers, Martin and Bush (2000) asks if role models influence teenagers’ purchase intentions
and behavior, and Bush et al. (2004) analyzes the influence of sports celebrity on the behavioral intentions
of a particular generation. Fainmesser and Galeotti (2018) propose a model of market interactions between
influencers, followers, and marketers.

2It can be argued that does not exist a truth with respect to some of these examples and it is only a matter of
preferences. However, in this paper, talking about consensus and learning, I refer to opinions about “objective”
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The main contribution of the paper is to identify key players (i.e. nodes that if tar-

geted are more effective in influencing the steady state opinion dynamics) through a new

centrality measure, and to analyze topological features that favor the spread of misinfor-

mation in a social learning framework where there is an underlying true state of the world

and agents receive a constant flow of information. I study the spread of misinformation

on a network composed by a set of agents, who each period receive noisy signals about the

true state of the world and update their belief as a convex combination of the Bayesian

posterior beliefs and a linear updating of neighborhood’s beliefs, as in Jadbabaie et al.

(2012).

I consider two types of misinformation: (i) permanent misinformation that is re-

peated over time and produces long-run effects, and (ii) temporary misinformation

that is unmasked in the long run and produce only short period effects.

To model permanent misinformation, I assume the presence in the network of stub-

born agents. A stubborn agent has a fixed opinion and learns neither by experience nor

by peers, she acts only to affect the outcome of others’ social learning. Stubborn are rep-

resentative of different types of spreaders of permanent misinformation both in society or

social media. In fact, stubborn can be used to model prominent agents (e.g. media, firms

or even politicians) that systematically disseminate opinions and information to convey

consent on themselves or on a particular idea that they support.3 Examples of prominent

agents that spread misinformation are the so-called climate deniers, who promote skepti-

cism about the scientific opinion on climate change (Oreskes, 2004). Stubborn can also be

used to model social bots; social bots are algorithms that exhibit human-like behavior and

are often used to repeatedly share factious or even fake news and negatively (or positively)

comment to show a disagreement (or a consensus) higher than the true one. 4

facts, that do not depend on personal or social preferences. E.g. we cannot say if a policy is “good” or “bad”,
since it depends on preferences, but, in principle, it is possible to assess its objective effect in a particular
economy. Thus, it is important to note that the “truth” is assumed to objectively exist, even if only in a
metaphysical realm.

3They can even represent agents who have incentives aligned with them; for example, influencers targeted
by some firms or political party to support a particular product or policy. Among theoretical results, Galeotti
and Goyal (2009) provides a model about strategic diffusion through influencers, while Fainmesser and Galeotti
(2015) and Fainmesser and Galeotti (2016) studies influencer marketing in both monopolistic and oligopolistic
framework.

4It was estimated (Varol et al., 2017) that the share of bots is between 9% and 15% of the total users active
on Twitter; in the same way, many Facebook’s users are “fakes”. Social bots are used to spread fake news stories
to influence political debates (Ratkiewicz et al., 2011), manipulate the stock market (Ferrara et al., 2016), and
spread conspiracy theories (Bessi et al., 2015), among others. Moreover, Silverman (2016) shows that fake news
stories are among the most shared on Facebook.
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The results show that having stubborn agents in the network is enough to prevent the

consensus, and thus the learning, to be reached. As in classical naive learning model

based on linear updating of others’ beliefs (DeGroot, 1974; Golub and Jackson, 2010,

among others), the steady state agents’ opinions depends on stubborn opinions and their

centrality; but as in our model agents receive a constant flow of information, the steady

state agents’ opinions depends also on the true state of the world and on agents’ reliance

on their private signals (self-weights). In deriving results a new centrality measure is ob-

tained, the updating centrality (UC). The updating centrality identifies the key agent

in a social learning process and does not depends only on the topology of the underlying

network, but positively depends on the steady state beliefs’ precision. According to the

updating centrality, agents that end up having less sharp opinions at the steady state

are less central than others, ceteris paribus. The important intuition beyond the concept

of updating centrality is that different agents’ social learning processes lead to different

relevant centrality measures. For example, if agents are able to recall all their past sig-

nals, the updating centrality coincides with the Katz-Bonacich centrality of the network

without self-weight. The functional form of UC does not depends on agents’ distributions

of beliefs. Moreover, it is important to underline that the paper presents the updating

centrality in the analysis of the diffusion of permanent misinformation, but the concept

of UC is general and does not depend on the presence of stubborn agents in the network.

I conclude the analysis of permanent misinformation discussing the optimal strategy of a

farsighted monopolistic “sophisticated” stubborn who knows the true state of the world

and wants to minimize the distance between the steady state opinion vector and his own

position. The stubborn faces a quadratic lying cost increasing in the distance between

her declaration and the truth. The main finding is a threshold value for the cost below

which the stubborn declares an opinion more extreme than her true opinion. Moreover,

results show that the higher the cost of lying the more dangerous a naive stubborn is with

respect a sophisticated one.

Due to their use and nature, many among social bots are not credible and fake news

are often unmasked in the long run, thus they only have a short period effect in the

opinion dynamics; for this reason, I conclude the paper studying the diffusion of tem-

porary misinformation.The analysis about temporary misinformation can be thought as

the study of an exogenous shock which temporarily moves opinions away from the steady

state; possible examples of this type of misinformation are the diffusion of unreliable fake

news in social media or rumors in a social circle. To understand the effect of temporary

misinformation, I study the speed of convergence of the social learning process in the

nearby of steady state without any stubborn agent. I study both the consensus time

(CT) and the learning time (LT). The consensus time indicates the time of interaction
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that agents need to reach very similar opinions. The learning time indicates the time of

interaction that agents need to reach opinions very close to the true one. I prove that

CT and LT in our framework are generally different. Our results are based on spectral

graph theory techniques. In particular, using Perron-Frobenius theorem and Cheeger’s

inequality (Chung, 1996; Cheeger, 1969) I show that the consensus time (in line with

previous literature) positively depends through the second largest eigenvalue on the “bot-

tleneckedness”, and thus the homophily, of the underlying network. On the other hand,

the learning time mainly depends on the strength of weights that agents give to their

private signals and, surprisingly, it may not decrease as you decrease the homophily, or in

general the“bottleneckedness”, of the network.5 This is due to the fact that, if the level

of private information is different across agents, the learning of better informed agents

is slowed down by others and this may reduce the speed of learning of the whole soci-

ety. Technically speaking, the learning time is proportional to the first eigenvalue of the

adjacency matrix without self-weight which, after some manipulations, can be shown as

negatively related to agents reliance of private signals.

The article is organized as follows. In Section 1.1 I offer a brief literature review. Section

2 lays out the formal framework of the model where I present, and microfound, agents’

updating rule. Section 3 studies the effect of permanent misinformation introducing the

presence of stubborn agents in the network. Section 3.1 characterizes the steady state

opinions’ vector and defines the concept of updating centrality. Section 3.2 is devoted

to comparative statics and in particular to measure the marginal distortion due to an

outgoing link from a stubborn. Section 3.3 studies the optimal opinion to declare for a

monopolistic stubborn who want to affect the opinion dynamics. Section 4 studies tempo-

rary misinformation discussing the speed of convergence and in particular consensus and

learning time showing when they coincide or differ and why. Section 5 concludes.

1.1 Literature Review

The main purpose of this project is to create a deeper link between the literature on

learning in networks and the literature on the optimal targeting of individuals to diffuse

(mis)information or opinions in a social network. Moreover, I show how a constant flow

of information may seriously change both the steady states opinions’ vector and the con-

vergence time with respect to standard DeGroot based models, where agents receive at

most one signals at the first period. This paper refers to different streams of literature.

Opinion Dynamics and Learning in Networks The literature about opinion

dynamics and learning on networks can be divided into two main approaches: Bayesian

5Surprisingly with respect to the results of the previous literature.
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and non-Bayesian learning models. (Golub and Sadler, 2016, for a survey). In particular,

the social learning process of this paper belongs to the non-Bayesian stream of literature,

which began, and strongly relies, on the famous DeGroot model, DeGroot (1974).6 Start-

ing from the standard DeGroot model, DeMarzo et al. (2003) make explicit the role of

the network, while Golub and Jackson (2010) derive general conditions on the adjacency

matrix to ensure the reaching of consensus. Concerning our purpose, the main limit of

DeGroot like models is that agents can receive signals about the true state of the world

only at the first period and then they update their beliefs aggregating others beliefs, as in

Golub and Jackson (2010). In such a case is very easy to manipulate others’ opinions and

spread misinformation in the network. Therefore, to better analyze the spread of misin-

formation I consider agents who receive signals about the true state of the world at each

period. To model the social learning process, I use an approach similar to Jadbabaie et al.

(2012), where agents combine their personal experience and the views of their neighbors

as a convex combination of the Bayesian posterior beliefs, given their personal signals,

and a linear updating of neighborhood’s beliefs.

Behavioral explanation for the Learning Process A contribution of the paper

is to use a beauty-contest like utility function (in the spirit of Morris and Shin (2002))

to propose an explanation for the mechanisms behind the specific social learning process

used (Jadbabaie et al., 2012). Beauty-contest like utility functions are widely used in the

literature about learning and opinion dynamics. For example, Bindel et al. (2015) use a

similar utility function show the correspondence with the DeGroot model and compute

its the inefficiency (with respect to other non-equilibrium strategies) through the price of

anarchy. Buechel et al. (2015) study the opinion dynamics when agents may misrepresent

their own opinion by conforming or counter-conforming with their neighbors. In Olcina

et al. (2017) the beauty-contest like utility function is used to study the norms’ assimila-

tion of ethnic minorities. A similar payoff structure is used also in Bolletta and Pin (2019)

where a dynamic process, with co-evolution of both individual opinions and network, is

characterized. Molavi et al. (2018), studies the behavioral foundations of non-Bayesian

models of learning over social networks under the main behavioral assumption of “imper-

fect recall” of others’ beliefs, showing that, social learning rules have a log-linear form, as

long as imperfect recall is the only point of departure from Bayesian rationality. In the

end, Dasaratha et al. (2018) study a set of Bayesian agents that learn about a moving

target, the main result is that, under incomplete information, a fully Bayesian learning

model can be tractable as the standard DeGroot heuristic.

6Some paper belonging to the Bayesian learning literature are Bala and Goyal (1998), Gale and Kariv (2003),
Rosenberg et al. (2009), Acemoglu et al. (2011), Acemoglu et al. (2014), Lobel and Sadler (2015), Mossel et al.
(2015). For a deeper discussion about both Bayesian and non-Bayesian paradigms I refer to the survey Golub
and Sadler (2016).
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Stubborn Agent To model permanent misinformation, I make use of stubborn agents.

Yildiz et al. (2013) use the concept of stubborn agents, firstly proposed by Mobilia (2003)

and Mobilia et al. (2007),7 in a binary opinion dynamics framework. While, models as

Grabisch et al. (2017) and Mandel and Venel (2017) study influences and targeting in

networks, through stubborn agents, using the DeGroot model for the learning process.

Targeting in Networks Since the position of the stubborn in the network is of

primary importance, results refer also to the literature that studies the problem of optimal

targeting in networks (Bloch, 2016, for a survey). Papers as Galeotti and Goyal (2009),

Candogan et al. (2012) and Fainmesser and Galeotti (2015) study targeting and pricing

problem from a monopolistic point of view, while Goyal et al. (2014), Fainmesser and

Galeotti (2016) and Bimpikis et al. (2016) deal with the same problem in the competitive

case. Our main contribution is to make the first attempt to consider a targeting problem,

through stubborn, in a society where agents receive each period signals about the true

state of the world, therefore the tension between the learning and the targeting force is

very relevant in our problem.

Key Player Important contributions, in economics, to targeting problems stem also

from the literature that aims to identify the key agent in a network (Zenou, 2016, for a

survey). Among the first and most important results, Ballester et al. (2006) define the

intercentrality measure, a centrality measure that takes into account not only a player’s

centrality but also her contribution to others’ centrality. While Banerjee et al. (2013)

derive a measure of diffusion centrality that discriminates between information passing

and endorsement. The paper contributes to this literature through the concept of the

updating centrality measure, which directly depends on the agents’ updating rule.

Speed of Learning The effect of temporary misinformation has only short-run effects,

therefore I analyze the speed of learning and the convergence to consensus. Golub and

Jackson (2012) examine how the speed of learning of average-based updating processes

(as DeGroot) depends on homophily, showing that convergence to a consensus, is slowed

by the presence of homophily.8 Jadbabaie et al. (2013) characterizes the rate of learning

in terms of the relative entropy of different agents’ signal structures and their eigenvector

centralities. Our contribution is to show that, if agents receive signals at each period,

which anchor them to the truth, then the learning time can be different from the consensus

time. Moreover, LT and is not necessarily related to the homophily level in society.

7They use the term zealot instead of stubborn.
8In Golub and Jackson (2012), the speed of convergence to a consensus is equivalent to the speed of learning.
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2 The Model

In this section, I introduce the baseline model; while in sections 3 and 4, I study the effect

of systematic and temporary misinformation on agents’ social learning respectively.

The Society The society is represented by a graph G(N,A), where N = {1, 2, ..., n}
is the set of finite nodes or agents and A ∈ [0, 1]N×N is the matrix that captures the

interaction patterns among agents in N . In particular, aij is the ij-th entry and represents

the weight that i gives to agent j, namely how much i listen j in proportion to others

agents in N . Each agent i ∈ N divides her attention between herself and the other agents

in N , thus the matrix is row-stochastic and its entries across each row are normalized,∑
j∈N aij = 1. I keep the analysis as general as possible considering a directed network

where the interactions can be asymmetric and one-side, so that aij > while aji = 0.9 The

set of neighbors of player i, namely agents that have a positive influence over i, is denoted

by Ni := {j ∈ N : aij > 0}.

States of Nature and Signals The finite set of possible states of nature is Θ ⊆ R
where its element θ∗ is the true state of the world. Conditional on the true state of the

world θ∗, at each time t ∈ N, each agent i observes a noisy signal ωi,t, and ωt := (ωi,t)i∈N

denotes the (column) vector with all the realized signals at t as elements. Signals, that

a generic i receive during her life, are drawn from a Gaussian distribution with mean

E[ωi] = θ∗, variance σ2ωi > 0, and precision τωi = 1
σ2ωi

, for all i ∈ N . I also assume that

for each agent signals are i.i.d. over time and agents do not need to have any information

about signals generation processes.

Agents’ Opinion Each agent i, has at each time t a probability distribution (or prob-

abilistic belief) over the possible state of the world pi,t(θ) ∈ ∆Θ. The opinion (belief) of

i, at each t, is the first moment of her probability distribution over Θ, µi,t =
∫

Θ θpi,t(θ)dθ,

and µt := (µi,t)i∈N denotes the (column) vector of opinions at t. While, σ2p
i,t and τpi,t are

respectively the variance and the precision of the probability distribution of i over the

possible states at t. At time 0, pi,0(θ) is assumed to be Gaussian for all i ∈ N .

Social Learning I assume that agents observe through communication their neigh-

bors’ beliefs. The observed beliefs are used, jointly with private signals received at each

period, to update beliefs about the underlying state of the world. The matrix A describes

weights of communication and reliance on their private signals.10 I say that agents have

9We can trivially restrict the analysis to directed networks, where aij = aji, results do not change.
10Notice that I are assuming that individuals update their true opinions in a non-fully rational way. In fact,

if individuals were fully rational, they would perfectly account for repetition of information. Empirical evidence
strongly suggests that individuals are not fully-rational in these settings. For example, laboratory experiments
shows that in both complex networks (Grimm and Mengel, 2014) and also in small social networks with common
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imperfect recall (IR) when they take into account only the last signal received in the

updating process. On the other hand with perfect recall (PR) agents are able to recall

and use the whole history of received signals. In this model, agents have alway imperfect

recall about others’ beliefs treating them as sufficient statistics for the entire history of

their observations.11 While I do not impose any restriction about the recall of past private

signals studying both imperfect and perfect recall.

Formally, the updating rule of probabilistic belief for each agent i ∈ N is assumed to

be a convex combination of the Bayesian updating β, and the average probabilistic beliefs

of their neighborhood (Jadbabaie et al., 2012)

pi,t+1(θ) = aiiβi,t+1 +
∑
j∈Ni

aijpj,t(θ) (1)

Where

βi,t+1 =
l(ωi,t+1|θ)pi,t(θ)∫

Θ l(ωi,t+1θ)pi,t(θ)dθ

is the Bayesian posterior belief at t for agent i and l(.|θ∗) is the likelihood function that

generates signals ω. Elements aii are the self-reliance of each agent i, while aij represents

how agent i weights j’s beliefs.

To study opinion dynamics, in this paper, I focus on the mean of the distribution. At each

time t the belief (opinion) of agent i is the first moment of the probability distribution

(1), namely

µi,t+1 = aii

∫
Θ
θβi,t+1dθ +

∑
j∈Ni

aijµj,t. (2)

Before to discuss, in the next session, permanent sources of misinformation it is important

to provide a behavioral explanation for our particular social learning rule.

Microfoundation There can be many reasons for which agent may aggregate others’

beliefs. For example, since agents do not have complete information about the distribu-

tion from which signals are drawn, they want to aggregate others’ information. Another

possibility is that they have preferences to conform to other agents or to specific role mod-

els in society. These considerations lead us to offer a micro-foundation for the updating

knowledge (Corazzini et al., 2012), people fail to properly account for repetitions of information.
11I refer to Molavi et al. (2018) for a deeper discussion about the implication of imperfect recall of others’

belief in social learning. Block et al. (2019) studies the effect of short (or long) memory for problems of learning
in games with social comparison.
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rule (1) of agents in the society with the following utility function.12

ui,t (pi,t(θ), p−i,t(θ)) = − (pi,t(θ)− 2aiiβi,t+1)2 −

pi,t(θ)− 2
∑
j∈Ni

aijpj,t(θ)

2

(3)

Solving first order conditions for (3) we find exactly the updating rule in (1).13

In next section, I introduce stubborn agents in the network.

3 Permanent Misinformation

In this section, I discuss the presence of a set of stubborn agents S = {s1, s2, ..., sm} in the

society. Stubborn represent “prominent agents” (as climate deniers, firms, social media,

political parties etc.) who have a fixed opinion and repeatedly share factious information

or actual misinformation in social media (or social cliques). A generic stubborn ss ∈ S, is

a particular agent that is not affected by the opinion of others and never revises her opin-

ion θss , namely assss = 1 and assi = 0 for all i ∈ N .14 Let denote with ass := (aiss)i∈N

the (column) vectors containing all influences of stubborn ss ∈ S over non stubborn agents.

As discussed in the previous section, agents may care about stubborn’s opinions, in (3),

for many reasons. For example, agents may ignore the presence of stubborn in the soci-

ety, or they may believe that stubborn have information that they do not have or they

see stubborn as role models and thus have preferences to conform to them. Thus, equa-

tion (3) still holds, an agent i takes into consideration the opinion of stubborn ss if ss ∈ Ni.

With two stubborn (s1, s2) in the network, the new adjacency matrix As representing

society with stubborn, is defined as15

12The first appearance of a similar utility function in economics is due to Morris and Shin (2002). I can find
it in similar frameworks in Bindel et al. (2015), Olcina et al. (2017), Dasaratha et al. (2018), Bolletta and Pin
(2019), among others.

13Which is equivalent to Jadbabaie et al. (2012).
14Our stubborn agent are the same as the stubborn in Yildiz et al. (2013) and the zealot in Mobilia (2003)

and Mobilia et al. (2007).
15Here I consider the case with only two stubborn agents, but it can be easily generalized to any number of

stubborn.
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As :=



a11 a12 ... a1n a1s1 a1s2

a21 a22 ... a2n a2s1 as2

... ... ... ... ...

0 0 ... 0 1 0

0 0 ... 0 0 1


=


A as1 ,as2

0 1 0

0 0 1



Where as1 and as2 are the column vectors composed by the weight that each agent i gives

to the stubborn. Notice that, with stubborn agents in the society, A is row-substochastic

and As is row-stochastic, such that
∑

j∈N aij +
∑

ss∈S aiss = 1, for each i ∈ N .

(a) (b)

Figure 1: (a) Network with 198 nodes and 486 edges G(N,A) (b) same network with 2 stubborn

agents with 7 link each G′(N ∪ S,As)

Stubborn receive always the same signals ωss for all ss ∈ S with E[ωss ] = θss and zero

variances. Since stubborn agents never revise their opinions, neither through social inter-

action nor through signals, their beliefs are fixed over time, µss,t+1(θ∗) = µss,t(θ
∗) = θs.

16

With stubborns, the updating of non-stubborn agents (2) can be written as

µi,t+1 = aii

∫
Θ
θβi,t+1dθ +

∑
j∈N

aijµj,t +
∑
ss∈S

aissθss (4)

Where the weight that i gives to a generic stubborn (ss ∈ S) is aiss 6= 0 if and only if

16I can provide a micro-foundation for stubborn, but in this case it is trivial.
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ss ∈ Ni. 17 Therefore, (2) and (4) have exactly the same meaning when ss ∈ Ni.

In next section, 3.1, I discuss the effect of stubborn opinions on the steady state opinions’

vector of other agents.

3.1 Characterization of Steady State Opinions’ Vector

We now characterize the effect of permanent misinformation, modeled as stubborn agents,

to the steady state opinion dynamics.

Let now write the opinions’ updating rule (4), for the whole society, in matrix form.

We decompose the adjacency matrix A as the sum of the diagonal matrix containing all

the weight that agents give to their private signals (self-loops), D := diag[a11, ...ann], and

the adjacency matrix of the network without self-loops, A := A −D. In particular, D

represents the weights that agents give to the Bayesian updating and A the linear (De-

Groot) updating. We further define β̄i,t :=
∫

Θ θβi,tdθ as the first moment of the Bayesian

posterior, at t, and β̄t := (β̄i,t)i∈N as the (column) vector containing the all β̄i,t. Each

ass is the vector containing all influences of stubborn ss ∈ S over agents.

In matrix form the updating of non-stubborn agent is

µt+1 = D · β̄t+1 +Aµt +
∑
ss∈S

assθss (5)

Before to characterize the steady state of opinion dynamics, let us defineG as the diagonal

matrix with γi as entries. γi depends on the steady state probability distribution, and,

in particular, it is increasing in the precision of the probability distribution for i at the

steady state, τpi .

Proposition 1 Given, for all agents i ∈ N , pi,0(θ) the probability distribution over Θ at

t = 0 (the prior), and IR of past signals holds, then at the steady state the probabilistic

belief, pi,∞(θ), converges to and the steady state vector of opinions µ := µ∞ (the first

moment of the probability distributions) is

µ = C

(
D(I −G)θ∗ +

∑
ss∈S

assθss

)
, (6)

where

C · 1 = (I −DG−A)−1 · 1 (7)

17Notice that agents may both not to be aware of the presence of stubborn in the network and can consider
them as other agents, or even they may be aware of their presence but they can consider them for other
sociological reasons.
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is the vector of updating centrality.

Proof. In the Appendix �.

Proposition 1 shows that the steady state opinion vector is a linear combination of the

underlying state of the world and stubborn opinions. Moreover, the relative influence that

an agent has over opinions’ steady state, and thus the weights of the linear combination,

depends on the updating centrality (UC) and on the weight that she gives to her private

signals, and to stubborn agents, respectively.

This result is particularly relevant with respect to the literature about targeting and

the key player in networks (Bloch, 2016; Zenou, 2016, for reviews of these literatures). If

a firm (or political party) wants to target agents who receive a constant flow of informa-

tion to disseminate their message, it should target the more central ones with respect the

UC measure, previously defined.

The updating centrality represents the relative influence of each node at the steady state

of a particular social learning framework.18 The UC measure does not satisfy the axiom

of symmetry of Bloch et al. (2017) and it is particularly interesting because does not

depends only on the topology of the underlying network, but positively depends also on

the steady state belief’s distribution and in particular precision τpi .19 Thus, both the

topological centrality and also the strength of agents’ opinions are important. Namely,

according to UC, agents that end up to have less sharp opinions at the steady state,

ceteris paribus, are less central than others. The intuition is straightforward, the more

the position of an agent allows her to have a sharper opinion at the steady state (higher

precision), the more, if targeted, her opinion remains close to the stubborn opinion. In

this way the targeting action results to be more effective. Roughly speaking the steady

state belief’s precision τpi is a measure of how effectively stubborn can convey her opinion

to and through the targeted agent i.

As a particular case I consider the situation in which agents are more rational and are

able to recall all past signals.20

18Notice that the vector of “updating centrality” depends on the updating rules, and priors’ distribution. We
are going to characterize the “updating centrality” only in the specific case of our model, but, for example,
it is trivial to see that for the DeGroot like models the “updating centrality” is nothing but the eigenvector
centrality.

19The steady state belief’s precision of an agents, depend on both from the network structure but also initial
belief.

20I disregard intermediate cases, where agents recall some of the past signals, since they do not add much to
the understanding of social learning.
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Corollary 1.1 Given, for all agents i ∈ N , pi,0(θ) the probability distribution over Θ at

t = 0 (the prior), and PR of past signals holds, then at the steady state the probabilistic

belief, pi,∞(θ), converges and the vector of opinions (the first moment of the probability

distributions) is

µ = C

(
Dθ∗ +

∑
ss∈S

assθss

)
, (8)

where

C · 1 = (I −A)−1 · 1 (9)

is the vector of “updating centrality”.

Proof. In the Appendix �.

Proposition 1 and Corollary 1.1 show that the presence of stubborn agents in the network

prevents the consensus to be reached at steady state. In this case, since the belief’s pre-

cision τpi is the same for all agents, the UC depends only on the underlying network and

coincides with the Katz-Bonachic (with parameter 1) centrality of the network without

self-weight.

As we have seen in Proposition 1 and Corollary 1.1, the underlying state of the word

θ∗ plays a role in determining the steady state opinions’ vector µ. To better present the

effect of stubborn and the role of the constant flow of information each period, I provide

two examples. In the first one I consider as a benchmark a set of agents that do not listen

the received signals and thus update their belief as in a standard DeGroot framework.21

While, in the second one I consider agents that give positive weight to their private signals.

Example 1 Consider a society composed by four agents, N = {1, 2, 3, 4} and two stub-

born s = {s1, s2}, with the true state being θ∗ = 10 and stubborn’s opinions θs1 = 15 and

θs2 = 5, respectively. Let us assume that all agents have no self-reliance, aii = 0 for all

i ∈ N and the updating rule is the standard DeGroot linear updating model. Consider

the social structure described in Figure 2, where the intensity of each link is 1
|Ni| , with

i ∈ Ni, for all i ∈ N . Even if the society is wise at t = 0, namely µi,0 = θ∗ = 10 for all

i ∈ N , the steady state opinions in (a) are 15 for all agents. Namely, if there is only one

stubborn in a network where agents linearly update their beliefs without constant signals

(as in DeGroot models) the opinion of each agent always converges to the stubborn’s

opinion. On the other hand, if there is more than one stubborn in the network, as in

(b) the steady state opinion vector depends on the centrality of agents connected with

stubborn. In particular, µ′1/n is 10.238 in (b). N

21This updating rule is the same used in Golub and Jackson (2010, 2012), in such a case our model with
stubborn is comparable to models as Yildiz et al. (2013) or Grabisch et al. (2017).
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(a) (b)

Figure 2: Networks composed by agents who learn in DeGroot fashion, where the intensity of each

link of i is 1
|Ni| . θ

∗ = 10, θs1 = 15, θs2 = 5. µ′1/n is 15 (a) and 10.238 (b).

In the following example, to better understand the importance of the constant flow of

new information I consider the same society, state of the world and stubborn as in Exam-

ple 1, but now agents have a positive reliance on their private signals.

Example 2 Consider society composed by four agents, N = {1, 2, 3, 4} and two stub-

born s = {s1, s2}, with the true state being θ∗ = 10 and stubborn’s opinions , θs1 = 15

and θs2 = 5, respectively. Moreover, agents care about past signals, aii > 0 for all i ∈ N ,

and PR holds. Consider the social structure described in Figure 3, where the intensity of

each link is 1
|Ni| , with i ∈ Ni, for all i ∈ N .

(a) (b) (c) (d)
µ C · 1 µ C · 1 µ C · 1 µ C · 1

1 10 3.6 10.7143 3.22857 9.318 3.273 10.03 2.98
2 10 3.4 10.7143 3.02857 9.545 3.182 10.3 2.88
3 10 3.4 10.7143 3.02857 8.41 2.64 8.97 2.41
4 10 3.6 11.4286 2.857 9.318 3.273 10.86 2.65

1
4
µ = 10 1

4
µ = 10.893 1

4
µ = 9.1477 1

4
µ = 10.0414

Table 1: Steady state opinions vectors and centralities relative to Example 2, where θ∗ = 10, θs1 = 15,
θs2 = 5.

In Table 1 we can see the centralities and the opinions at the steady states of agents in
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(a) (b)

(c) (d)

Figure 3: Networks composed by agents who recall and care about their past signals, where the

intensity of each link of i is 1
|Ni| . θ

∗ = 10, θs1 = 15, θs2 = 5.

N in all 4 cases. It is evident the effect of the constant flow of information, with only

one stubborn the society does not converge toward the stubborn’s opinion, while with two

stubborn the average steady state opinion µ′1/n is closer to the truth than in a standard

DeGroot updating model, as in Example 1. N

Corollary 1.1 tells us that, if agents are able to recall past signal their opinions are closer

to the truth than with IR, nevertheless having PR of signals is not enough to have the con-

vergence toward the truth. However, there exist particular situations in which a society

with stubborn reaches the truth. It is trivial to see that all elements in µ are equal to the

truth θ∗ if agents do not give importance to the stubborn, ass = 0 for all ss ∈ S or if the

stubborns’ opinion is equal to the truth itself, θss = θ∗. Moreover, if stubborn have the

same influence over the society then the society can converge to the truth. For example

with only two stubborn if as1 = as2 and θs1 = 2θ∗−θs2 then µ = θ∗. Notice that in these

16



cases the welfare is maximized both from the policy maker’s and agents’ prospective. I

refer to the Appendix B for details and a deeper discussion about approaching the truth

where there are stubborn agents in the society.

We can see that having more than one stubborn agent may facilitate learning if stub-

born are evenly distributed around the truth. Therefore, from the point of view of a

policy maker with the utility function up(µ) := −(µ − θ∗)2, it may make sense to fa-

cilitate the entry of stubborn agents with different opinions, once there is already one

in the network. This may suggest us that when the presence of a factious social media

is recognized in the society, having more social media with different opinion may be de-

sirable. Notice however that this argument is valid only if the network is exogenous, as

in this paper. On the contrary, if agents have the possibility to choose their connection

then, depending on the network structure and the strength of the signals, in the long-run

stubborn can be isolated or different isolated communities where agents have opinion very

close to the stubborn one may arise.

In next two sections (3.2 3.3), to convey results and, at the same time, to maintain formal

simplicity, we consider a network with only one stubborn agent. We study, in 3.2, the

distortion induced by a stubborn and, in 3.3, the optimal declaration of a sophisticated

stubborn.

3.2 Marginal Distortion Induced by Stubborn

In order to better understand the effect of stubborn agents on the social learning, I an-

alyze the effect of increasing (or decreasing) the influence of a stubborn agent s over a

generic agent i of αis.
22

Let define âis = ais + αis1 the new influence of a generic stubborn s on agent i and recall

that the listening matrix should remain normalized (row-stochastic) then
∑

j 6={i,s} âij =∑
j 6={i,s} âij − αis (

∑
j 6={i,s} αij = −αis and therefore αis = −

∑
j αij). I further assume

that aii remain fixed for all i, that αis = α and αij = α
n , for simplicity.

Let Â := A − ei(gi)
′ be the modified matrix where gi is the n-dimensional listening

column vector that has: (i) 0 in its ith position, (ii) α/|Ni| in all jth positions different

from the one associated with the stubborn; e′i is the is the n-dimensional row vector that

has a 1 in its ith position and 0 elsewhere.

The next proposition describes the effect of introducing one stubborn agent in the so-

22Since in this section and in the next one we consider only one stubborn I call it s, instead of ss.
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ciety composed only by non-stubborn agents.

Proposition 2 In a society without stubborn agents, if one agent create a link of intensity

α with a stubborn, the marginal effect is

∆µ = (C −X)αeiθs −XD(I −G)θ∗ (10)

and the steady state opinion vector is

µ̂ = (C −X) (D(I −G)θ∗ + αeiθs) (11)

Moreover,

X · 1 =
Cei(gi)

′C

1 + (gi)
′Cei

· 1

describe the distortion induced by the stubborn on agents’ “ updating centrality”.

Proof. In the Appendix �.

The distortion induced by a stubborn in the opinion steady state vector is |∆µ|. From

(10), it is evident that the distortion is increasing in the distance between θs and θ∗.

Moreover, as shown by the distortion term X, an increase (decrease) in stubborn influ-

ence creates a distortion in the centrality of all agents in the network, the new “updating

centrality” is (C −X). 23

If we consider a benevolent policy maker who want to minimize the distance between

agents’ opinion and the truth (with the previous utility function up(µ) := −(µ − θ∗)2)

the distortion |∆µ| represents a measure of the policy maker’s welfare loss. The welfare

of policy maker is maximum when all the agents learn the truth, |∆µ|.

3.3 Monopolistic Stubborn Agent Problem

We have, until now, considered naive stubborn agents that always declare exactly the

opinion that they want to disseminate. Let now consider a sophisticated stubborn

that is able to optimally choose the opinion to declare in order to maximize the diffusion

of the opinion that she really want to disseminate.

The stubborn knows the true state of the world θ∗ and it is farsighted, namely she is

able to compute the steady state opinion vector µ. The stubborn, given a fixed influence

over agents, can declare any opinion θds ∈ Θ such that minimize the distance between

23In this section, I study to a situation in which stubborn agents are not connected with the rest of the society
(as1 = as2 = 0). In the Appendix I extend the results to generic as1 and as2.
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agents’ opinion and her own true opinion θs. I further assume that the stubborn faces

a cost of lying (Kartik et al., 2007; Kartik, 2009). The cost of lying is assumed to be

quadratic and proportional to difference between the true state of the world θ∗ and the

declared opinion θds , and is parameterized by k ∈ R+ which is the intensity of the lying cost.

The interpretation of the intensity of the lying cost, k, can be manifold, it can be thought

as the punishment (fines) for having spread fake news, or as a cost to convince others

about the reliability of your opinion (e.g. advertising cost), or can even represent the

expected loss in credibility due to a too extreme declaration.

The stubborn choses to declare θds that solve the following problem

max
θds

us(µ) := − (µ− 1θs)
2 − k(θ∗ − θds)2 (12)

Proposition 3 Given, for all agents i, pi,0(θ) the probability distribution over Θ at t = 0

(the prior), IR of past signals holds, and there is one sophisticated stubborn agent that

solves the problem in (12), then at the steady state the probabilistic belief, pi,∞(θ), con-

verges and the stubborn s would declare

θds =
1′Cas

a′sC
′Cas + k

θs −
(C (D(I −G)1))′ as − k

a′sC
′Cas + k

θ∗. (13)

Moreover, the steady state vector of opinions (beliefs) is

µ = C

((
D(I −G)− as

(C (D(I −G)1))′ as − k
a′sC

′Cas + k

)
θ∗ + as

1′Cas
a′sC

′Cas + k
θs

)
(14)

Proof. In the Appendix �.

From (13), we can study conditions under which the stubborn declare a more extreme

opinion than the one that she really has, |θ∗ − θds | > |θ∗ − θs|.

Without loss of generality we consider only the case where θs > θ∗ > 0. From (13)

we find k̄ = (1′Cas−a′sC′Cas)θs−(C(D(I−G)1))′asθ∗

θs−θ∗ such that:

k < k̄ ⇔ θds > θs. (15)

Whenever the cost of lying k overcomes the threshold k̄, the sophisticated stubborn in-

duces a lower opinions’ distortion than a naive stubborn that declares exactly the opinion

she wants to disseminate.

To better understand the implication of Proposition 3, I propose a numerical example.
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Example 3: Let us consider the two societies described by Figure 3 (b) and Figure

3 (c). The stubborn in (b) and (c) want to disseminate θds1 = 15 and θds2 = 5, re-

spectively. All agents have PR of past signals. The cost of lying for the stubborn is

k = 0.5. In (b) the stubborn s1 chooses θds1 = 17.22 and the steady state average opinion

is µ′1/n = 11.2897. On the other hand, in (b) the stubborn s2 chooses θds2 = 5.78 and

the steady state average opinion result to be µ′1/n = 8.2955. Notice that the same cost

of lying k = 0.5 is low enough for the more central stubborn s1 to declare a more extreme

opinion (θds1 > θs1 > θ∗), and high enough for the less central s2 to declare a less extreme

opinion (θ∗ > θds2 > θs1). This suggest us that a more central stubborn has more room

to spread misinformation in the society. N

Let define a society smart if the government can implement policy to enhance cost of

lying (k ↑) or in which is the population’s culture that, being is less tolerant to lies, have

a higher cost of lying (k ↑), thus a society is more smart than another whenever its the

cost of lying k is higher. The main message of this section is that in a smart society a

naive stubborn – who, given her inability to make a declaration that maximizes her utility,

declares her true opinion– is more dangerous than a sophisticated one. In fact, a naive

stubborn pursuits is own agenda, to disseminate a certain opinion θs 6= θ∗, no matter on

the cost that she faces. On the other hand, a sophisticated stubborn takes into account

how costly is to declare a certain opinion. Therefore, the more the society is “smart” the

more ineffective is the action of the sophisticated stubborn.

These results can provide us with insight about different political campaign strategies

and allows us to explain, to a certain extent, the big differences between political state-

ments before and after voting.

I have previously discussed that a policy may have incentives to introduce stubborn in the

society to contrast the spread of misinformation and facilitate learning. In Appendix B, I

discuss also the competition and the optimal declaration strategy of a stubborn controlled

by policy maker to contrast the effect of a sophisticated stubborn in the society.

4 Temporary Misinformation

In previous sections, we have analyzed social learning only when there are permanent

sources of misinformation (stubborn agents), in the society. In this section, I address the

study of the speed of convergence to the consensus and the speed of learning of (5) in a

network without stubborn agents but with temporary misinformation.
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In the real world, there exist temporary sources of misinformation (e.g. rumors or fake

news) that do not affect the long-run learning but may have important short-run effects.

Gratton et al. (2017), for example, show that a bad sender (i.e. the spreader of misinfor-

mation in our setting) releases information later than good seder, this is mainly due to

the fact that in the long-run fake news are unmasked.

Let us consider, for example, a massive diffusion of fake news, or misinformation, that

foreruns an election. In such a case, if the learning take place at a too slow pace, the

temporary distortion can seriously affect the election’s outcome. Other examples where

the speed of learning play a crucial role are the diffusion of misinformation regarding

health, or climate change, issues where the longer the learning process the more serious

the damages are. It is important to stress that in this cases the convergence to the con-

sensus is not enough, in fact, agents may agree but still be far from the truth.

With updating rule as in (5), if the network is strongly connected (no stubborn), all

agents learn the truth, in the long-run (Jadbabaie et al., 2012). However, in the short-run

the speed of convergence can play a crucial role. Let us consider the steady state opinions’

vector without any stubborn, µ = θ∗, and let assume that each agent i receive a shock εi

that represents the diffusion of temporary fake news. The learning process start again by

µt = θ∗ + ε. (16)

Since Jadbabaie et al. (2013) studies the role of different information among agents, in this

paper I focus on the role of the network structure. For this reason I discuss the problem

considering the case in which all agents are able to perfect recall their past signals, thus

after some periods agents private information are equivalent.24 Under PR the updating

rule is

µt+1 = Aµt +Dθ∗. (17)

To study the consensus time we avoid to consider the effect of the true state of the world

θ∗ on agents’ updating. Using (16), (17) becomes

µt+1 = Aµt +D(µt + ε) = Aµt +Dε,

where ε represents a small deviation from the steady state. There is consensus when

agents’ opinion are very similar to each other, regardless of the initial shock. Therefore

Dε is negligible and the consensus time depends only on the convergence of A. Thus,

24Since we assume a shock at the steady state, under PR all agents have collect severals signals therefore the
first moment of their bayesian posterior is exactly θ∗.
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the consensus dynamics of (17) is equivalent to

µt+1 = Aµt. (18)

Therefore we can use the standard definition of consensus used by Golub and Jackson

(2012). Using the standard l2-norm, I define consensus time as the time it takes for the

distance, between average sum of current opinions and steady state opinions of (18), to

get below an arbitrary small enough ε:

Definition [Consensus Time] The consensus time to ε > 0 of a connected graph G is

CT (ε,G) := sup
µt∈Rn

min{T : ||ATµt −A∞µt|| < ε}.

Taking the supremum allows us to consider the worst case as a benchmark.

To define the learning time, I still use the l2-norm. The learning time is the time T ,

such that the distance between the opinion vector µt+T and the true state of the world

θ∗, is less then ε:

Definition [Learning Time] The learning time to ε > 0 of a connected graph G is

LT (ε,G) := sup
µt∈Rn

min{T : ||µt+T − θ∗|| < ε}.

Again, I use the supremum to consider the worst case as a benchmark.

Notice that in our problem the learning time can be different from the consensus time.

Agents may have very similar opinions but still be far from the truth and, receiving new

pieces of information at each period, they approach θ∗ until they reach it.25

To understand how the network topology affect the consensus and the learning time,

it is now important to define a “bottleneckedness” measure of a network.

Definition [Cheeger Constant] The Cheeger Constant of the graph G(N,A) is

φ(G) = min
S⊆N

∑
i∈S

∑
j /∈S

aij
|S||Sc|

.

where S ∪ Sc = N .

The Cheeger constant is a measure of whether or not a graph has a “bottleneck”. It

quantifies how the network G can be partitioned in two components. If φ(G) is small then

25For example, in the past many people did not believe that smoking cigarette was harmful to health.
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the network is composed by two sets of vertices with few links between them. On the

other hand, if φ(G) is large, then the network has many links between those two subsets.

Moreover, the Cheeger constant is strictly positive if and only if the network is connected.26

Defining 1 = λA1 ≥ λA2 ≥ λAn the eigenvalues of the matrix A.

Proposition 4 Given the updating rule (17) and a network represented by the adjacency

matrix A, then for any ε > 0 the consensus time CT (ε,G) is in the order of λA2 exponen-

tially. Moreover,
φ(G)2

2
≤ 1− λA2 ≤ 2φ(G). (19)

Proof. in the Appendix. �

This result is standard and consistent with previous literature. In fact, the matrix A
is stochastic and we know from the theory of Markov chains that speed of convergence

negatively depends on the magnitude of the second eigenvalue of A. Moreover, if shocks

are correlated, φ(G) is strictly related with the spectral homophily measure of Golub and

Jackson (2012). The main idea is that the speed of convergence depends on the second

largest eigenvalue of A, and according to Cheeger’s inequality the second smallest eigen-

value of the Laplacian matrix λLAn−2 is an approximation of the Cheeger constant.27 We

can prove that, in this model, λLA2 = 1− λAn−2, therefore the smaller λA2 is, the faster the

consensus occurs and the more connected the two subsets of nodes are.28

Figure 4 clearly shows how the more the two subsets of nodes are connected, the faster

the opinion to converge toward the consensus. In this example, lower “bottleneckedness”

means higher homophily, in fact, shocks in ε are of opposite sign for agents belonging

to the two subgroups. We can further see, that a faster consensus does not translate in

a faster learning. In these examples (Figure 4) it is possible to see see that, the society

with more “bottleneckedness” (less homophily) is the first to learn the truth in average.

Therefore here the learning time does not depend only on the “bottleneckedness” (or ho-

mophily) of the network as in Golub and Jackson (2012).

To study the speed of learning the truth, we go back to consider the dynamics in (17)

where the role of θ∗ is explicit. Let recall that the steady state of (17) is θ∗ and that A

is a sub stochastic matrix, in fact A = A+D.

26The first formulation of Cheeger constant is due to Cheeger (1969), for a deeper discussion of discrete
version I refer to Chapter 2 and 6 of Chung (1996).

27In the appendix I provide technical details and formal definition of Chegeer’s inequality and Laplacian
matrix. For a deeper discussion about Chegeer’s inequality I still refer to Chapter 2 and 6 of Chung (1996).

28The second-smallest eigenvalue of the Laplacian matrix λLA
2 is known as the algebraic connectivity of the

graph, and is greater than 0 if and only if the graph described by the adjacency matrix A is a connected graph.
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(a) (b)

(c)

Figure 4: Convergence of µt to θ
∗ = 5 in networks with, εi = 0.25 for i = 1, 2, 3 and εi = −0.25

for i = 4, 5, 6. (a) λA2 = 0.9760, (b) λA2 = 0.5991, (c) λA2 = 0.2283

Let us define āii :=
∑n−1

i
aii
n−1 and minaii as the average and the minimum among self-
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weights, respectively. And κ(U) := ||U ||||U−1|| as the condition number of the eigenvector

basis U .

Proposition 5 Given the updating rule (17) and a network represented by the adjacency

matrix A, then for any ε > 0

LT (ε,G) ≤ d log(ε/(κ(U))

log(|λA1 |)
e (20)

Moreover,

min
i
{aii} ≤ 1− λA1 ≤ āii (21)

Proof. in the Appendix. �

The first part of Proposition 5 shows that, the LT (ε,G) is of the order of the higher eigen-

value of the substochastic matrix A which represent the network without self-weights, and

not on the eigenvalue of the full adjacency matrix A. Moreover, positively depends also

on the condition number of the eigenvector basis. The second part of Proposition 5 shed

light on the role of self-reliance for the speed of learning in our problem. The minimum

self-loop mini{aii} – which represents the “weakest link” of the learning process, namely

the agent that gives less weight to her own private information— is related, through λA1 ,

to the lower bound of the time of learning. Namely, the higher the minimum individual

consideration about the stream of information is, then the faster the learning can be, at

its minimum. Thus, it is extremely important how bad informed is the less informed

agent, improving the lower level it is possible to ensure a minimum speed of learning. On

the other hand, the average self-loop āii – that is the attention that the society gives, on

average, to her own private information– can provide information about the upper bound

of speed of learning, namely the higher the average individual consideration about the

stream of information is, then the faster the learning can be, at its maximum.

Notice that if aii = ajj = α for all i, j ∈ N then, from (21), α = 1 − λA1 . Moreover

from (20) LT (ε,G) ≤ d log(ε/(κ(U))
log(1−α) e.

We have seen, in Proposition 4 and 5, how the “bottleneckedness” (homophily) of the

network plays a crucial role in the consensus time, while self-weights are fundamental for

what concerns the learning time.

It is important to stress that the learning time, even if ultimately depends on λA1 , in

the short-run is affected even by other eigenvalues, depending on the magnitude.29 As an

29I refer to the proof of Proposition 5 for details.
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approximation I believe that is enough to consider only λA1 , λ
A
2 , the two largest eigenval-

ues.30 The main intuition is that given two societies with similar levels of self-weights,

different learning times are due to the difference on the second largest eigenvalues. Un-

fortunately, in this case, the interpretation of λA2 as “bottleneckedness” of the networks

is not straightforward.

Corollary 5.1 Let us consider two symmetric graphs G1(N,A1) and G2(N,A2), where

A1 = αI + A1 and A2 = αI + A2, with α ∈ [0, 1]. Given the updating rule (17), if

φ(G1) ≥ φ(G2) then for any ε > 0

• CT (ε,G1) ≤ CT (ε,G2)

• LT (ε,G1) ≤ LT (ε,G2)

Proof. in the Appendix �

Corollary 5.1 discusses the particular case where all agents in two different symmetric

networks give the same weight to the information they receive. In this case the ordering

of second largest eigenvalues of adjacency matrices relative to the network without self-

loops (λA1
2 and λA2

2 ) is the same as the ordering of “bottleneckedness” measures (φ(G1)

and φ(G2)). In Figure 5, we can observe a numerical example where all agents give the

same weights to their private information and as a result a higher homophily leads to a

faster consensus and learning.

From Proposition 4 and 5 and Corollary 5.1 we deduce that, if agents receive a con-

tinuous stream of new information about the true state of the world then the speed of

learning and the speed of convergence to the consensus are, in general, different. The first

one mainly depends on the self-reliance of agents, namely how much they care about the

information that they receive. The second strongly depends on the “bottleneckedness”

of the network and therefore, when shocks are correlated with network structure, on the

homophily. If all agents have the same fixed reliance on private signals and the network

is symmetric then a smaller “bottleneckedness” (higher homophily) leads both to a lower

consensus and learning time.

Comparing results with Golub and Jackson (2012) the main insight is that, if agents

receive new information at each time then the learning time is not necessarily directly

correlated to homophily. For example, an increase in the number of connections among

agents belonging to two different subset of the network31 may translate into a higher LT

30Notice, in fact, that A is row sub-stochastic therefore all the eigenvalues are less then 1 and most of them
vanish after very few iterations.

31That, as said, correspond to a decrease in the level of homophily if shocks are correlated.
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Figure 5: Convergence of µt to θ∗ = 5 in networks with equal self-loops α = 0.3, θ∗ = 5,
εi = 0.25 for i = 1, 2, 3 and εi = −0.25 for i = 4, 5, 6. (a) λA2 = 0.5846, (b) λA2 = 0.4209, (c)
λA2 = −0.1

(as in Figure 4), due to the rescaling of self-weights.32

From a policymaker point of view, these results suggest an increase in the network density

does not directly translate into a faster learning of the truth. Moreover, policies that aim

to increase social interaction and decreasing the homophily to facilitate agents’ learning,

may succeed only if agents belonging to different groups have very similar levels of “good

information”. On the contrary, the learning of better informed agents is slowed down by

others and this reduce the speed of learning of the whole society.

5 Conclusion

This paper addresses the problem of the spread of misinformation in a social network

where agents interact to learn an underlying state of the world with a non-Bayesian social

learning process. The main difference with the standard naive social learning is the con-

tinuous stream of new signals that agents receive at each period. This implies a stronger

connection to the truth in the learning process. Considering the permanent misinforma-

tion or opinion manipulation pursuit by “prominent” agents the paper shows that despite

32Given that
∑

j aij = 1 for all j ∈ I, if for i aik increase, where k ∈ I/{i}, then the sum of others aij , for
j ∈ I/{k} should decrease of the same amount, thus aii can decrease too.
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receiving new signals every period, agents are not able to learn the underlying state of

the word nor to reach a consensus. This depends on the fact that the network is not

strongly connected due to the presence of “prominent agents” who behave as stubborn.

Differently from the benchmark of DeGroot model, if agents receive signals at each period,

the steady state agents’ opinion does not depends only on the stubborn opinion and the

centrality of agents connected to stubborn but also on the true state of the world and on

agents’ self-reliance. The paper also introduce a novel centrality measure the “updating

centrality” that, in the case of perfect recall of past signals, corresponds to the Katz-

Bonachic centrality. I further characterize the optimal action of a stubborn who want to

manipulate the opinion dynamics showing his relationship with the cost of disseminating

misinformation. At the end, we discuss the consensus and learning time after an exoge-

nous shock that temporarily moves opinions away from the steady state. I prove that the

speed of reaching the consensus inversely depends on the “bottleneckedness”, and thus the

homophily, of the underlying network, while the speed of convergence toward the truth

mainly depends on the strength of self-weights.

A potential interesting extension for the future is to study a similar framework in a

society where agents have the possibility to choose their connection. The probable result

is that if stubborn agents are not very central and agents strongly rely on their private

signals, then stubborn agents end up to be isolated in the long-run and agents reach a

full learning. On the other hand, if stubborn is central and agents have low reliance on

private signals then different isolated communities where agents have opinion very close

to the stubborn can arise. In this framework, it is interesting to investigate if a sophis-

ticated stubborn would declare more extreme opinions when she is central or peripheral.

This analysis can be useful to investigate the role of different information structure in the

arising of polarization phenomena.
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A Appendix

A.1 Lemma 1

Before presenting the proof of Proposition 1 and Corollary 1.1 we have to state and proof

the following lemma.33

Lemma 1 (Jadbabaie et al., 2012) Let As denote the matrix of social interactions.

The sequence
∑n

i=1 νipi,t(θ
∗) converges P∗ - almost surely as t→∞, where ν is any non-

negative left eigenvector of As corresponding to its unit eigenvalue.

Proof.

Notice that since As is stochastic its largest eigenvalue is λ1 = 1. Moreover, always ex-

ists ν a non-negative left eigenvector corresponding to the eigenvalue λ1 = 1. We define

pt+1(θ) := (pi,t+1(θ))i∈N the vector of probabilistic belief of all i ∈ N and ps1,t+1(θ), ps2,t+1(θ)

the stubborn beliefs. Since stubborn do not revise their beliefs we can consider only the

probabilistic belief’s updating rule (1) for all i ∈ N (evaluated at θ∗)

pt+1(θ∗) = Apt(θ∗)+
n∑
i=1

pi,t(θ
∗)aii

(
l(ωi,t+1|θ∗)∫

Θ l(ωi,t+1θ∗)pi,t(θ∗)dθ
− 1

)
+

n∑
i=1

[ai,s1ps1(θ∗) + ai,s2ps2(θ∗)]

(22)

A is a stochastic matrix, therefore the largest eigenvalue is λ1 = 1, we denote with ν

the eigenvector corresponding to λ1. Notice that all element in ν are non negative and

ν ′A = ν ′λ1. Moreover, for a generic stubborn ps(θ) = 0 for all θ 6= θs.

Let us multiply both sides of (20) by ν ′,

ν ′pt+1(θ∗) = ν ′Apt(θ∗)+
n∑
i=1

νipi,t(θ
∗)aii

(
l(ωi,t+1|θ∗)∫

Θ l(ωi,t+1θ∗)pi,t(θ∗)dθ
− 1

)
+

n∑
i=1

νi [ai,s1ps1(θ∗) + ai,s2ps2(θ∗)]︸ ︷︷ ︸
=0

then we take the expectation E associated with measure P∗ with respect the filtration Ft

E
[
ν ′pt+1(θ∗)|Ft

]
= ν ′pt(θ

∗) +
n∑
i=1

νipi,t(θ
∗)aiiE

[(
l(ωi,t+1|θ∗)∫

Θ l(ωi,t+1θ∗)pi,t(θ∗)dθ
− 1

)
|Ft
]

33 We adapt the proof from Jadbabaie et al. (2012), the only difference is the presence of stubborn agents
that makes As not to be strongly-connected.
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Jensen’s inequality implies that

E
[(

l(ωi,t+1|θ∗)∫
Θ l(ωi,t+1θ∗)pi,t(θ∗)dθ

)
|Ft
]
≥

(
E

[(
l(ωi,t+1|θ∗)∫

Θ l(ωi,t+1θ∗)pi,t(θ∗)dθ

)−1

|Ft

])−1

= 1

then

E
[
ν ′pt+1(θ∗)|Ft

]
= ν ′pt(θ

∗) +

n∑
i=1

νipi,t(θ
∗)aii E

[(
l(ωi,t+1|θ∗)∫

Θ l(ωi,t+1θ∗)pi,t(θ∗)dθ
− 1

)
|Ft
]

︸ ︷︷ ︸
≥0

Therefore

E
[
ν ′pt+1(θ∗)|Ft

]
≥ ν ′pt(θ∗)

Thus, since ν ′pt(θ
∗) is a submartingale with respect Ft then it converges P∗ - almost surely.

�

A.2 Proof of Proposition 1

Signals are drawn from a Gaussian distribution. Being pi,0(θ) normally distributed too,

it is a conjugate prior for all i ∈ N . Thus the mean of the bayesian posterior distribution

is a convex combination of the mean of the prior and the received signal. Moreover, the

higher the precision of the prior the lower the strength of signal on the posterior, and its

average. In particular

β̄i,1 =

∫
Θ
θβi,1dθ = γni,0µi,t + (1− γni,0)ωi,1 (23)

where ωi,1 is the signal received by agent i at 1 and γni,0 =
τpi,0

τpi,0+τω
(the superscript n stands

for normal, in fact it depends on the normality assumption). At each period agents

according to (4) update their probabilistic belief trough a convex combination of their

bayesian posterior and their neighborhoods’ probabilistic beliefs, thus pi,t(θ) with t > 1 is

always a mixture of Gaussians. From Lemma 3.4.2 of Robert (2007), we know that given a

natural conjugate family of an exponential family, then the set of mixtures of n conjugate

distributions, is also a conjugate family and the posterior distribution is a mixture of

the posterior of each component of the mixture. For this reason the first moment of the

posterior is always a convex combination of convex combinations between the prior mean

and the received signal, moving on with time the prior is a convex combination of the

convex combination at the previous period and so on. Therefore, at a generic time t > 1

β̄i,t+1 =

∫
Θ
θβi,t+1dθ = γi,tµi,t + (1− γi,t)ωi,t+1, (24)
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where γi,t depends also on the weight of the mixture (elements of aij for all j ∈ N) and

it is increasing in τpi,t. Thus (4) becomes

µt+1 = D(Gtµt + (I −Gt)ωt) +Aµt +
∑
ss∈S

assθss (25)

From Lemma 1, we know that the probability distribution converges, pi,t(θ) → pi(θ) :=

pi,∞(θ) therefore both the mean and the precision always converges almost surely µi,t →
µi := µi,∞, τpi,t → τpi := τpi,∞ and thus γi,t → γi := γi,∞. Moreover, we recall that

E[ω] = θ∗. Thus, by the law of large numbers at the steady state

µ = D(Gµ+ (I −G)θ∗) +Aµ+
∑
ss∈S

assθss

That lead us to

⇒ µ = (I −DG−A)−1︸ ︷︷ ︸
C

(
D(I −G)θ∗ +

∑
ss∈S

assθss

)

�

A.3 Proof of Corollary 1.1

If agents are able to recall all the past signals after T period they will compute their

bayesian posterior using all the T signals. We know that the more data we have the more

the data overwhelm the prior and dominate the Bayesian posterior. Therefore as T →∞,

lim
T→∞

γi,T = 0

Then all elements of matrix G approach zero time to time. At the steady state

⇒ µ = (I −A)−1

(
Dθ∗ +

∑
ss∈S

assθss

)

�

A.4 Proof of Proposition 2

In order to prove Proposition 2 we state this well known linear algebra result.

Sherman-Morrison Formula. (Sherman and Morrison, 1950) Let B be a nonsingu-

lar n-dimensional real matrix, and u,v two real n-dimensional column vectors such that

1 + v′A−1u 6= 0. Then,
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(B + uv′)−1 = B−1 − B
−1uv′B−1

1 + v′B−1u

Since G is a diagonal matrix and αii is assumed to be zero, then we can apply the

Sherman-Morrison Formula, where B = (I −DG−A), u = ei and v = gi.

We study the general case. Let us consider the steady state opinion vector.

µ = (I −DG−A)−1 (D(I −G)θ∗ + as1θs1 + as2θs2)

If agents i increase the interaction with the stubborn s1 of α then will decrease propor-

tionally the interaction of other agents as captured by the vector gi. The new interaction

matrix is Â := A − eig
′
i. Since ei(gi)

′ does not affect the main diagonal D, the new

opinion vector. µ̂ is

⇒ µ̂ = (I −DG−A+ eig
′
i)
−1 (D(I −G)θ∗ + (as1 + αei)θs1 + as2θs2)

By Sherman-Morrison Formula we know that

(I −DG−A+ eig
′
i)
−1 = (I −DG−A)−1 − (I −DG−A)−1eig

′
i(I −DG−A)−1

1 + g′i(I −DG−A)−1ei

The first term on the right side is C. We name X the second one. Thus we obtain

⇒ µ̂ = (C −X) (D(I −G)θ∗ + (as1 + αei)θs1 + as2θs2)

⇒ µ̂ = C (D(I −G)θ∗ + as1θs1 + as2θs2)︸ ︷︷ ︸
µ

+ ((C −X)αei −Xas1)θs1 −X(D(I −G)θ∗ + as2θs2)︸ ︷︷ ︸
∆µ

)

If we want to see the effect of creating the first link of intensity α with a stubborn for a

generic i it is enough to consider a interaction matrix where as1 = as2 = 0, thus

µ̂ = C (D(I −G)θ∗)︸ ︷︷ ︸
µ

+ (C −X)αeiθs1 −XD(I −G)θ∗︸ ︷︷ ︸
∆µ

)

⇒ µ̂ = (C −X)(αeiθs1 +D(I −G)θ∗)

We can see that

X =
(I −DG−A)−1eig

′
i(I −DG−A)−1

1 + g′i(I −DG−A)−1ei
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measures the variation of the updating centrality after introducing a stubborn in the

society.

�

A.5 Proof of Proposition 3

The convergence of the probability distribution is ensured by Lemma 1 and Proposition 1.

Let us consider the maximization problem described in (12)

max
θds

us(µ) := − (µ− 1θs)
2 − k(θ∗ − θds)2

Expanding the first term we obtain

max
θds

−µ′µ+ 2(1θs)
′µ− (1θs)

′(1θs)− k(θ∗ − θds)2

We can see that this problem is equivalent to

max
θds

−µ′µ+ 2(1θs)
′µ− k(θ∗ − θds)2 (26)

With only one sophisticated stubborn agent that declares θds the steady state opinion

dynamics is

µ = C
(
D(I −G)θ∗ + asθ

d
s

)
(27)

Substituting (27) in (26) we obtain

max
θds

−2 (C (D(I −G)θ∗))′ asθ
d
s − a′sC ′Casθd2

s + 2(1θs)
′Casθ

d
s − k(θ∗ − θds)2

We solve the First Order Condition:

−2 (C (D(I −G)θ∗))′ as − 2a′sC
′Casθ

d
s + 2(1θs)

′Cas + 2k(θ∗ − θds) = 0

⇒ θds =
− (C (D(I −G)θ∗))′ as + (1θs)

′Cas + kθ∗

a′sC
′Cas + k

Therefore we get the optimal declaration for an optimizing stubborn.

θds =
1′Cas

a′sC
′Cas + k

θs −
(C (D(I −G)1))′ as − k

a′sC
′Cas + k

θ∗

Substituting θds in the steady state opinion vector equation we get exactly (14).
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A.6 Proof of Proposition 4

To prove that the consensus time of (17) is in the order of λA2 exponentially we use the

following well-know theorem

Theorem 6 (Perron-Frobenius) Let the eigenvectors be chosen so that ν ′ivi = 1, where

ν ′i is the left eigenvector and vi is the right eigenvector. λ1 and λ2 the first and second

largest eigenvalue and r2 the algebraic multiplicity associated with λ2. Then we get

An = (λA1 )nviν
′
i + o(nr2−1|λA2 |n)

Corollary 6.1 SinceA is a stochastic aperiodic matrix λA1 = 1 and v = 1 if the algebraic

multiplicity associated with λA2 r2 is equal to 1, then

An = 1ν ′i + o(|λA2 |n)

a smaller second-largest eigenvalue directly corresponds to a higher rate of convergence.

⇒ CT (ε,G) is in the order of λA2 exponentially.

Before to prove inequality (19) we have to introduce the definition of Laplacian matrix

and the result known as Cheeger’s inequality.34

Definition (Laplacian Matrix) A matrix L := (lij) ∈ Rn×n is a Laplacian Matrix L iff

1. li,j ≤ 0, j 6= i

2.
∑n

j=1 li,j = 0, i = 1, 2, ..., n

The Laplacian Matrix can be computed as the difference between the diagonal degree

matrix and the adjacency matrix.

Cheeger’s Inequality (Chung, 1996) If λL
A

n−2 is the second smallest eigenvalue of the

Laplacian of the graph G(N,A), then:

φ(G)2

2
≤ λLAn−2 ≤ 2φ(G)

A is a row-stochastic matrix, thus his Laplacian is LA = I−A and its the second smallest

34We refer to Agaev and Chebotarev (2005) for the discussion about non-symmetric Laplacian matrices and
to Chung (1996) for Cheeger’s inequality.

34



eigenvalue is nothing but λL
A

n−2 = 1 − λA2 , where λA2 is second largest eigenvalue of the

adjacency matrix. Therefore

⇒ φ(G)2

2
≤ 1− λA2 ≤ 2φ(G)

�

A.7 Proof of Proposition 5

Iterating the process (17) we get

µt+T = ATµt +
T−1∑
t=0

AtDθ∗

µt+T = ATµt +
I −AT

I −A
Dθ∗

µt+T = ATµt + (I −AT )θ∗

⇒ µt+T − θ∗ = AT (µt − θ∗)

Thus depends on how fast is AT → 0. If A is diagonalizable then, we can define U as the

eigenvector matrix and Λ as the diagonal matrix with eigenvalues on its main diagonal.

A = UΛU−1

is the eigendecomposition of A. Therefore iterating it T times we get

AT = UΛTU−1

‖µt+T − θ∗‖ = ‖AT (µt − θ∗)‖

= ‖UΛTU−1(µt − θ∗)‖

≤
n∑
j=1

|λAj |T ‖U‖‖U−1‖‖(µt − θ∗)‖

≤ |λA1 |T ‖U‖‖U−1‖

Where the last inequality stem from (16), and ‖U‖‖U−1‖ = κ(U) is the condition number

of the eigenbasis U . Moreover, if

T ≥ log(ε/(κ(U)))

log(|λA1 |)
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Then

‖µt+T − θ∗‖ ≤ ε

Therefore

LT (ε,G) ≤ d log(ε/(κ(U))

log(|λA1 |)
e

The LT (ε,G) depends on eigenvalues and eigenvectors. We can, thus, conclude that

LT (ε,G) is of the order of the higher eigenvalue, exponentially. And positively depends

on the condition number of the eigenvector basis. Notice that all eigenvalues have a short-

run effect, that decays over time according to the their absolute values.

We now prove the inequality (21) in Proposition 5. Let us define as d̄A and dAmax as

the average and the maximum degree, respectively

• Lower bound

Using the Rayleigh quotient (Horn and Johnson, 1985)

1′A1

1′1
=

∑
ij aij

n
=

∑
i d
A
i

n
= d̄A ≤ λA1 (28)

• Upper bound

Let ν1 be an eigenvector belonging to λA1 and ν1i be the entry with largest absolute

value. Then

λA1 |ν1i| =
∑
j

aij |ν1i| ≤ dAmax|ν1i|

⇒ λA1 =
∑
j

aij ≤ dAmax (29)

Putting together (28) and (29) we finally get

⇒ d̄A ≤ λA1 ≤ dAmax

Since A = A −D, then the degree of a generic agent i is di =
∑

i aij = 1 − aii. Thus,

the average degree d̄A = 1 −
∑

i
aii
n = 1 − āii and the maximum degree of A is dAmax =

maxi{1− aii} = 1−mini{aii}. Therefore, for a graph described by the adjacency matrix

A

1− āii ≤ λA1 ≤ 1−min
i
{aii}

�
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A.8 Proof of Corollary 5.1

In general, by Cheeger’s inequality we have that

2LAn−2 ≤ φ(G) ≤ 2
√
λL

A
n−2

Namely, φ(G) is increasing in λL
A

n−2 = 1− λA2 . Therefore we can conclude that

φ(G1) ≥ φ(G2) =⇒ λA1
2 ≤ λA2

2 =⇒ CT (ε,G1) ≤ CT (ε,G2) (30)

Where the last implication stem from Proposition 4.

If A1 = αI +A1 and A2 = αI +A2 then, by Proposition 5, we know that λA1
1 = λA2

1 =

1 − α. Therefore the first eigenvalues does not tell us which network converge faster to

θ∗. We know, from the proof of Proposition 5 that LT (ε,G) depend on eigenvalues of A

and not A. Thus, since λA1
1 = λA2

1 = 1− α we can say that

LT (ε,G1) ≤ LT (ε,G2) ⇐⇒ λA1
2 ≤ λA2

2 (31)

Lemma 2 (Horn and Johnson, 1985) Given two commuting matrix C and D, there exists

a unitary matrix U such that U−1CU = ΛC and U−1DU = ΛD. where ΛC ,ΛD are

diagonal matrices with eigenvalues as elements. Thus we get

C +D = U(ΛC + λD)U−1

Applying this lemma to both A1 and A2 and considering only the second largest eigen-

value, we obtain that

λA1
2 = α+ λA1

2 , λA2
2 = α+ λA2

2

Therefore if

λA1
2 ≤ λA2

2 ⇐⇒ λA1
2 ≤ λA2

2 (32)

Using (30), (31) and (32) togheter we get exactly the result of Corollary 5.1.

�
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B Supplementary Materials

B.1 Convergence toward the Truth

Let us consider a network with a malevolent stubborn agent, the “spreader”, s who affects

the opinion dynamics declaring θs 6= θ∗ and a benevolent policymaker p (still stubborn)

who want citizens to be as more informed as possible and thus to minimize the distance

of steady state opinion vectors to the truth35

up(µ) := −(µ− 1θ∗)2 (33)

Since it is not always possible to directly affect the network structure, we wonder if there is

an action (declaration of θp) that the policymaker p can do to promote the spread of truth

against the presence of stubborn agents in the society. It is clear that (30) is maximized

when all agents have opinions equal to θ∗. In the next proposition, we show that if the

influence of the two stubborn (p=policymaker and s=spreader) is not symmetric, then it

is not possible to reach exactly the truth

Proposition 7 If the two stubborn agents have different influence over agents, ap 6= as 6=
0, and θs 6= θ∗ then

@ θg : µ = θ∗

If stubborn agents have equal influence over agents, ap = as, and one among them declare

θp = 2θ∗ − θs

then all agents in the society learn the truth:

µ = θ∗

Notice that this results can be extended to a society with more than two stubborn, in the

appendix we provide the characterization of the result with many stubborn.

Even if, whenever ap 6= as it is not possible for a policymaker to chose θp such that

µ = θ∗ it is still possible to get close enough to the truth by declaring an opinion that

minimizes the distance with the steady state opinions’ vector.

Proposition 8 If all agents have IR of past signals and there a malevolent spreader s

with fixed opinion θs 6= θ∗ and a benevolent policymaker p with utility function (33), then

35Notice that at this stage we assume the stubborn agent to be naive, namely the opinion θs 6= θ∗ is not the
result of a maximization process, but it is exogenous.
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p would declare the following opinion

θp =
1′Cap − (C (D(I −G)1))′ ap

a′pC
′Cap

θ∗ −
a′pC

′Cas

a′pC
′Cap

θs

then steady state vector of beliefs (opinions) is

µ = C

((
D(I −G)1 + ap

1′Cap − (C (D(I −G)1))′ ap
a′pC

′Cap

)
θ∗ +

(
as − ap

a′pC
′Cas

a′pC
′Cap

)
θs

)
(34)

If the stubborn is sophisticated as in Section 3.3, the policy maker has to keep that

into account. To have more tractable results we assume, without loss of generality, that

θp = θ∗ = 0

Proposition 9 If all agents have “imperfect recall” and there is a sophisticated malevo-

lent spreader s that solves the problem in (12) and a benevolent policymaker p with utility

function (33) where θp = θ∗ = 0, then the declared opinions areθds =
1′Cas(a′pC

′Cap+k)

j θs

θdp = − a′pC
′Cas

a′pC
′Cap+k

1′Cas(a′pC
′Cap+k)

j θs
(35)

where j = k(k + a′sC
′Cas + a′pC

′Cap) + a′sC
′Casa

′
pC
′Cap − a′sC ′Capa′pC ′Cas is a

constant.

Then steady state vector of beliefs (opinions) is

µ = C

(
1′Cas(a

′
pC
′Cap + k)

j

(
as − ap

a′pC
′Cas

a′pC
′Cap + k

))
θs (36)

We now provide proofs of proposition in this section.

B.2 Proofs of Supplementary Materials

B.2.1 Proof of Proposition 7

Notice that since A is stochastic matrix then (I −A)1 = D1 + as1 + as2, then

• If as1 = as2 = 0

µ = (I −DG−A)−1 (D(I −G)θ∗)
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where (I −DG−A)1 = (D(I −G)1), thus

µ = (I −DG−A)−1 (D(I −G)1) θ∗

⇒ µ = (D −DG)−1 (D −DG)︸ ︷︷ ︸
I

1θ∗ = θ∗

• If θs1 = θs2 = θ∗

µ = (I −DG−A)−1 (D(I −G)θ∗ + as1θ
∗ + as2θ

∗)

where (I −DG−A)1 = (D(I −G)1 + as1 + as2), thus

µ = (D + as1 + as2 −DG)−1 (D(I −G)1 + as1 + as2) θ∗

⇒ µ = (D(I −G) + as1 + as2)−1((D(I −G) + as1 + as2)︸ ︷︷ ︸
I

θ∗ = θ∗

• µ = θ∗ if

as1θs1 + as2θs2 = (as1 + as2) θ∗

as1θs1 = (as1 + as2) θ∗ − as2θs2

as1θs1 = as1θ
∗ + as2(θ∗ − θs2)

If θs1 it is a scalar, the system has only one solution

θs1 = 2θ∗ − θs2

if and only if as1 = as2.

On the other hand, if as1 6= as2 if θs1 is a scalar is not possible for one of the

two stubborn to compensate the distortion created by the other.

(Double check) If as1 = as2 = as and θs1 = 2θ∗ − θs2

µ = (I −DG−A)−1(D(I −G)θ∗ + as1 (2θ∗ − θs2) + as2θs2)

µ = (I −DG−A)−1(D(I −G)θ∗ + 2asθ
∗)

µ = (I −DG−A)−1(D(I −G)1 + 2as)θ
∗
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which is equivalent to

µ = (D + 2as −DG)−1(D(I −G)1 + 2as)θ
∗

The first two bullet points discuss the conditions under which the truth is always reached

while the third bullet point prove Proposition 7. Now we generalize the result to more

than 2 stubborn.

If the cardinality of the set of stubborn agents is S and as1 = as2 = ... = ass = as

then µ = θ∗ if

asθs1 +

S∑
s=2

asθss =

(
S∑
s=1

ass

)
θ∗

⇒ asθs1 =

(
as +

S∑
s=2

ass

)
θ∗ −

S∑
s=2

assθss

⇒ asθs1 = asθ
∗ +

S∑
s=2

ass(θ
∗ − θss)

⇒ θs = θ∗ +

S∑
s=2

ass(θ
∗ − θss)
as1

�

B.2.2 Proof Proposition 8

Maximizing the utility function (33)

max
θp
−(µ− 1θ∗)2

max
θp
−µ′µ+ 2(1θ∗)′µ

since

µ = C (D(I −G)θ∗ + apθp + asθs)

substituting µ in the problem and considering only elements depending on θp we get

max
θp
−2 (C (D(I +G)θ∗))′ apθp − 2a′pC

′Casθpθs − a′pC ′Capθ2
p + 2(1θ∗)′Capθp

we now solve the First Order Condition

−2 (C (D(I −G)θ∗))′ ap − 2a′pC
′Casθs − 2a′pC

′Capθp + 2(1θ∗)′Cap = 0

− (C (D(I −G)1))′ apθ
∗ − a′pC ′Casθs − a′pC ′Capθp + 1′Capθ

∗ = 0
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Thus the optimal policy maker’s declaration is

θp =
1′Cap − (C (D(I −G)1))′ ap

a′pC
′Cap

θ∗ −
a′pC

′Cas

a′pC
′Cap

θs

Substituting in µ we get exactly

µ = C

(
D(I −G)θ∗ + ap

(
1′Cap − (C (D(I +G)1))′ ap

a′pC
′Cap

θ∗ −
a′pC

′Cas

a′pC
′Cap

θs

)
+ asθs

)

µ = C

((
D(I −G)1 + ap

1′Cap − (C (D(I −G)1))′ ap
a′pC

′Cap

)
θ∗ +

(
as − ap

a′pC
′Cas

a′pC
′Cap

)
θs

)
(37)

�

B.2.3 Proof Proposition 9

There are two stubborn, one controlled by the policy maker p and spreader of misinfor-

mation s.

max
θdp

us(µ) : − (µ− 1θp)
2 − k(θ∗ − θdp)2

We assume, without loss of generality, that θp = θ∗ = 0

max
θdp

us(µ) : − (µ− 0)2 − k(−θdp)2

µ = C
(
apθ

d
p + asθ

d
s

)
(38)

max
θdp

−µ′µ− k(−θdp)2

max
θdp

−2a′pC
′Casθ

d
pθ
d
s − a′pC ′Capθd2

p − k(−θdp)2

F.O.C.

−a′pC ′Casθds − a′pC ′Capθdp − kθdp = 0

Solving for θdp

θdp = −
a′pC

′Cas

a′pC
′Cap + k

θds
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by symmetry

θds =
1′Cas

a′sC
′Cas + k

θs −
a′sC

′Cap
a′sC

′Cas + k
θdp

Substituting θdp

⇒ θds =
1′Cas

a′sC
′Cas + k

θs +
a′sC

′Cap
a′sC

′Cas + k

a′pC
′Cas

a′pC
′Cap + k

θds

Solving for θds

θds
k(k + a′sC

′Cas + a′pC
′Cap) + a′sC

′Casa
′
pC
′Cap − a′sC ′Capa′pC ′Cas

(a′sC
′Cas + k)(a′pC

′Cap + k)

=
1′Cas

a′sC
′Cas + k

θs

Therefore

⇒ θds =
1′Cas(a

′
pC
′Cap + k)

j
θs (39)

where j = k(k + a′sC
′Cas + a′pC

′Cap) + a′sC
′Casa

′
pC
′Cap − a′sC ′Capa′pC ′Cas is

a constant.

θdp = −
a′pC

′Cas

a′pC
′Cap + k

1′Cas(a
′
pC
′Cap + k)

j
θs (40)

θds and θdp are both decreasing in k.

Substituting (39) and (40) into (38) we obtain

µ = C

(
−ap

a′pC
′Cas

a′pC
′Cap + k

1′Cas(a
′
pC
′Cap + k)

j
+ as

1′Cas(a
′
pC
′Cap + k)

j

)
θs

µ = C

(
1′Cas(a

′
pC
′Cap + k)

j

(
as − ap

a′pC
′Cas

a′pC
′Cap + k

))
θs
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