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Abstract

Many Bayesian Confirmation Measures have been proposed so far. They
are used to assess the degree to which an evidence (or premise) E supports or
contradicts an hypothesis (or conclusion) H, making use of prior probability
P (H), posterior probability P (H|E) and of probability of evidence P (E). Many
kinds of comparisons of those measures have already been made. Here we fo-
cus on symmetry properties of confirmation measures, which are partly inspired
by classical geometric symmetries. We define symmetries relating them to the
dihedral group of symmetries of the square, determining the symmetries that
can coexist and reconsidering desirable/undesirable symmetry properties for a
Bayesian Confirmation Measure.

Keywords: Bayesian Confirmation Measures, symmetries, dihedral group, de-
sirability.
J.E.L. classification: C10, C44, C80

1 Introduction

Inductive rules, E → H, are a way to express relationships in a dataset, meaning
that the knowledge of E supports conclusion H, and can be supported by data with
different intensities.

∗This research was partially supported by MIUR
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Bayesian Confirmation Measures (BCMs) are interestingness measures aimed at
evaluating the degree to which an evidence E supports or contradicts the conclu-
sion H, using prior probability P (H), posterior probability P (H|E) and P (E), the
probability of evidence E. Evidence E may in fact confirm conclusion H when
P (H|E) > P (H), or disconfirmed it when P (H|E) < P (H).

It is therefore quite natural to define a measure c(H,E) that satisfies the following
Definition (see, e.g., [8], [12]):

Definition 1 A function c of conclusion H and evidence E, is a Bayesian Confir-
mation Measure (BCM) when

c(H,E) > 0 if P (H|E) > P (H) (confirmation case)

c(H,E) = 0 if P (H|E) = P (H) (neutrality case)

c(H,E) < 0 if P (H|E) < P (H) (disconfirmation case)

The study of the analytical properties of BCMs can allow to grasp the differences
among measures (see [11] and [15]) but also geometric and visual approaches allow to
uncover their properties and to suggest how to select the right one to be used for a
specific purpose (see [3], [20] and [21]). Symmetries are, not surprisingly, among the
properties that can be better captured by a geometric approach. The first symmetry
properties that were defined by Carnap [2], concern the confirmation values attained
by the measure when negation of evidence, ¬E, is substituted to evidence E, negation
of conclusion, ¬H, is substituted to conclusion H, or when the roles of evidence
and conclusion are inverted. Crupi et al. (see [7]) completed the set of symmetries
proposed by Carnap considering all their possible combinations.

Here we propose a group theoretical way to clarify the relationships between the
different symmetries for BCMs proposed in the literature. To do that, we define a
set Σ of symmetry functions acting on the couples (H,E) of hypothesis and evidence
sentences, and then we endow the set with the composition of symmetries obtaining a
group structure that we prove to be isomorphic to the dihedral group D8 (Section 2).
Relating the symmetry functions to the symmetry properties of BCMs (Section 3) we
uncover the possible subsets of concurrent symmetries a BCM can display (Section
4), providing examples of BCMs that possess exactly those subsets of symmetries.
The group structure of the set Σ provides both quick paths to the study of all the
symmetry properties of a BCM and ways to analyse the desirability/undesirability
(see [7], [9], [14], [15], [17]) of the symmetries they display (Section 5).
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2 The group of symmetry functions defined on hypotesis-
evidence couples

Crupi et al. [7] define symmetry functions as applied to a couple hypothesis-evidence
(H,E), i.e. an ordered couple of sentences H (Hypothesis) and E (Evidence) where H
and E belong to the set of sentences Γ which is supposed to be closed under negation
and conjunction.
Following [7] we consider three basic symmetry functions E , H and I defined in Γ×Γ:

E negation of Evidence: E(H,E) = (H,¬E);

H negation of Hypothesis: H(H,E) = (¬H,E);

I inversion of Evidence and Hypothesis: I(H,E) = (E,H).

In other words, the rule E → H is changed into ¬E → H by E , into E → ¬H by H
and into H → E by I.
Symmetry functions E , H and I can be easily composed so as to obtain the other
four symmetry functions proposed in [7]:

EH negation of Evidence and Hypothesis:

EH(H,E) = H(E(H,E)) = (¬H,¬E);

EI inversion follows negation of Evidence:

EI(H,E) = I(E(H,E)) = (¬E,H);

HI inversion follows negation of Hypothesis:

HI(H,E) = I(H(H,E)) = (E,¬H);

EHI inversion follows negation of Evidence and Hypothesis:

EHI(H,E) = I(H(E(H,E))) = (¬E,¬H).

Let us add to the seven above recalled symmetry functions the identity function σ0

(for which σ0(H,E) = (H,E) for all (H,E)). We obtain a set of symmetry functions

Σ = {σ0, E ,H, I, EH, EI,HI, EHI}

that can be endowed with the composition of symmetries operation ⊗ as detailed by
the Cayley table (Table 1). Observe that in position (i, j) of the Cayley table we put
the symmetry function σi ⊗ σj obtained as σi ⊗ σj(H,E) = σj(σi(H,E)).
Table 1 reveals that (Σ,⊗) is a non-commutative group (for non-commutativity see,
e.g., that E ⊗ I does not coincide with I ⊗ E) that will be proved to be isomorphic
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Table 1: Cayley table of (Σ,⊗); symmetry in the first column operates first.
⊗ E H I EH EI HI EHI
E σ0 EH EI H I EHI HI
H EH σ0 HI E EHI I EI
I HI EI σ0 EHI H E EH
EH H E EHI σ0 HI EI I
EI EHI I E HI EH σ0 H
HI I EHI H EI σ0 EH E
EHI EI HI EH I E H σ0

Table 2: Isomomorphism of D8 into Σ.
Dihedral → Symmetry functions
group D8 group (Σ,⊗)

e → σ0

a → HI
a2 → EH
a3 → EI
x → EHI
ax → H
a2x → I
a3x → E

to the dihedral group D8. 1 To relate (Σ,⊗) with the dihedral group D8 we consider
the map defined in Table 2, where e is the identity in D8, while the usual geometric
interpretation of a is the counter-clockwise rotation by π/2 and of x is the reflection
about a fixed line.

The map defined in Table 2 is an isomorphism, as can be easily proved by com-
paring the Cayley tables of the two Groups: in Table 3 we report the Cayley’s table
for D8.

Therefore, adapting the classical lattice representation of the structure of the dihedral
group D8, we can also depict the subgroup structure of the Symmetry functions
subgroup (Σ,⊗) as in Figure 1. The structure of the subgroup lattice will be used
in Section 5 to suggest an apt way to explore symmetry properties of a BCM, in
particular considering the Frattini subgroup.2

1The dihedral group can be formally defined as generated by two elements a and x such that
a4 = x2 = e and xa = a−1x, see, e.g., [1].

2The Frattini subgroup is the intersection of all maximal subgroups.
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Table 3: Cayley table of D8; symmetry in the first column operates first
a3x ax a2x a2 a3 a x

a3x e a2 a3 ax a2x x a
ax a2 e a a3x x a2x a3

a2x a a3 e x ax a3x a2

a2 ax a3x x e a a3 a2x
a3 x a2x a3x a a2 e ax
a a2x x ax a3 e a2 a3x
x a3 a a2 a2x a3x ax e

Σ, whole group

{σ0, I, EH, EHI}
Klein-normal

{σ0, EH, EI,HI}
characteristic

{σ0, E,H, EH}
Klein-normal

{σ0, I}
sub normal

{σ0, EHI}
sub normal

{σ0, EH}
center

Frattini subg.

{σ0, E}
sub normal

{σ0,H}
sub normal

{σ0} trivial

Figure 1: Lattice of subgroups of group (Σ,⊗)

3 Symmetries of Bayesian Confirmation Measures

The symmetry properties of BCMs have already been related to geometric symme-
tries, see the recent papers [3], [4] and [20]. In particular, the geometric interpretation
proposed in [3] is set in the so-called Confirmation Space which is defined by the two
dimensions x = P (H|E) and y = P (H), where confirmation measures that are IFPD
measures 3 can be visualised in a particularly vivid way.

A group theoretic approach has been suggested in [21] treating symmetries as per-
mutations of the elements of 2x2 contingency tables, and compositions of symmetries
as compositions of permutations. Changing the point of view, we prefer to consider
symmetries as defined by means of logical variations of the involved elements in the
inductive rule E → H, that is, on different combinations of H, E and of their negati-
ons ¬H and ¬E; it becomes therefore interesting to analyse symmetry properties by
referring to symmetry functions σ ∈ Σ. We will see that this way the group structure
of (Σ,⊗) can be used to detect in a straightforward manner which symmetry proper-
ties of a BCM can coexist. This is another side of the concept of inconsistency in [21]),

3In the particular case in which a confirmation measure can be expressed as a function of P (H|E)
and P (H) only, it is said to satisfy the Initial and Final Probability Dependence (IFPD) condition [8].
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which, in turn, appears to be quite interesting in connection with the debate on the
desirability of symmetry properties of a Bayesian Confirmation Measure [7], [17].

Since we want to exploit the group structure of (Σ,⊗) in order to have an in-
depth look on symmetry properties of BCMs, we observe first, that each symmetry
function σ ∈ (Σ,⊗) can be used to define a corresponding symmetry property S
defined on BCMs. For example, a BCM c(H,E) is said to satisfy evidence symmetry
if c(H,E) = −c(H,¬E) (see [7]): alternatively, we can consider the negation of
evidence function E and say that c(H,E) satisfies evidence symmetry if c(H,E) =
−c(E(H,E));likewise, using the negation of hypothesis symmetry function H, it is
possible to set the definition of hypothesis symmetry property (see [7]) of a BCM:
c(H,E) = −c(H(H,E)) = −c(¬H,E).

In general, given a BCM c(H,E) and a symmetry function σ(H,E) ∈ Σ we can
define a symmetry property of c

c(H,E) = sign(σ) · c(σ(H,E))

where sign(σ) must be set, given the chosen symmetry function, in order to fulfil
the basic sign requirements of a BCM as reported in Definition 1. Nicely, it turns
out that the correct sign to be considered is always (−1)k where k is the number of
negations (¬) contained in the symmetry function definition.

The set of symmetry properties of a BCM (see [7]) can therefore be viewed as
originated by the set of symmetry functions Σ, as outlined in Definition 2.

Definition 2 A confirmation measure c satisfies

Evidence Symmetry ES if

c(H,E) = −c(E(H,E)) = −c(H,¬E);

Hypothesis Symmetry HS if

c(H,E) = −c(H(H,E)) = −c(¬H,E);

Evidence Hypothesis Symmetry EHS if

c(H,E) = c(EH(H,E)) = c(¬H,¬E);

Inversion Symmetry IS if

c(H,E) = c(I(H,E)) = c(E,H);

Evidence Inversion Symmetry EIS if

c(H,E) = −c(EI(H,E)) = −c(¬E,H);

Hypothesis Inversion Symmetry HIS if
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c(H,E) = −c(HI(H,E)) = −c(E,¬H);

Evidence Hypothesis Inversion Symmetry EHIS if

c(H,E) = c(EHI(H,E)) = c(¬E,¬H).

We define Σ = {ES,HS,EHS, IS,EIS,HIS,EHIS} as the set of all possible sym-
metries of a BCM.

4 Exploiting the structure of the symmetry functions
group

As mentioned, the group structure of (Σ,⊗) can be used to detect which symmetry
properties of a BCM can coexist, that is, all the feasible combinations of symmetries
taken from set Σ.

Let us start by considering the way in which new symmetry properties can be
detected as soon as we know a couple of them.

Lemma 1 Given a confirmation measure c satisfying two symmetry properties in Σ,
say S1, S2, with corresponding symmetry functions σ1, σ2 ∈ Σ and signs (−1)k1,
(−1)k2, then necessarily c satisfies other two symmetry properties in Σ, say S3, S4,
with sign (−1)k1+k2 and corresponding symmetry functions σ3 = σ1 ⊗ σ2 and σ4 =
σ2 ⊗ σ1.

Proof
Given that c is supposed to satisfy symmetry properties S1 and S2, it is c(H,E) =
(−1)k1c(σ1(H,E)) and c(H,E) = (−1)k2c(σ2(H,E)) where σ1 and σ2 are the corre-
sponding symmetry functions, and k1, k2 denote the number of negations ¬ contained
in the symmetry function definitions.
Then, c(H,E) = (−1)k1c(σ1(H,E)) = (−1)k1(−1)k2c(σ2(σ1(H,E)), by repeated ap-
plication of symmetry hypotheses.
In the same way, c(H,E) = (−1)k2c(σ2(H,E)) = (−1)k2(−1)k1c(σ1(σ2(H,E)), so
that c(H,E) = (−1)k1+k2c(σ1(σ2(H,E)) = (−1)k1+k2c(σ2(σ1(H,E))).

By the way, observe that from Lemma 1, it follows that if c satisfies two symmetry
properties S1, S2 ∈ Σ, then with reference to symmetry functions σ1, σ2 ∈ Σ, it is
c(σ1(σ2(H,E))) = c(σ2(σ1(H,E))) for all H,E ∈ Γ.
A first consequence of the group structure of (Σ,⊗) can now be given in the next
Proposition.

Proposition 1 A Bayesian Confirmation Measure satisfies either 1, 3 or 7 symmetry
properties, or no one.
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Proof
From Proposition 1 it follows that if S1 and S2 hold, with corresponding symmetry
functions σ1, σ2 ∈ Σ, then necessarily also S3, with corresponding symmetry σ3 =
σ1⊗σ2, and S4, with corresponding symmetry σ4 = σ2⊗σ1, must hold, where σ1, σ2,
σ3 and σ4 obviously belong to the same subgroup of (Σ,⊗). By Lagrange’s Theorem
(see, e.g., [1]) we know that in finite groups the order of a subgroup divides the order
of the group and (Σ,⊗) has order 8. Subgroups can therefore have either 1, 2, 4 or 8
elements, identity included. The result follows excluding from each possible subgroup
the identity symmetry function since, of course, it does not correspond to any BCM
symmetry.

The link between symmetry functions and the symmetries of BCMs allows to precisely
deduce the symmetry properties that can be concurrently satisfied by a BCM, a
result that follows by considering all the possible subgroups of the group of symmetry
functions (Σ,⊗) and the corresponding symmetry properties.

Proposition 2 A Bayesian Confirmation Measures can satisfy exactly one of the
following sets of concurrent symmetries:

(i) no symmetry property;

(ii) exactly one symmetry among IS, EHIS, EHS, ES and HS;

(iii) exactly IS ∧ EHS ∧ EHIS or EHS ∧ EIS ∧HIS or ES ∧HS ∧ EHS;

(iv) all the symmetry properties ES, HS, IS, EHS, EIS, HIS, EHIS.

Proof
Proposition 1 establishes the cardinality of each subset of concurrent symmetry pro-
perties; given the isomorphism of Σ into D8 it is possible to explicitly write all the
possible subgroups of symmetry functions of (Σ,⊗) and therefore the possible corre-
sponding symmetry properties that can be jointly satisfied. The possible subgroups
are (see Figure 1):

order 1: {σ0},
order 2: {σ0, I}, {σ0, EHI}, {σ0, EH}, {σ0, E}, {σ0,H},
order 4: {σ0, I, EH, EHI}, {σ0, EH, EI,HI}, {σ0, E ,H, EH},
order 8: the whole group {σ0, E ,H, I, EH, EI,HI, EHI}.

It turns out that the symmetry properties that a BCM can simultaneously satisfy are
those stated in the Proposition.
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Given the isomorphism of (Σ,⊗) with D8, Proposition 2 identifies thus a partition of
the set of BCMs into 10 equivalence classes, each partition being defined by the set
of satisfied symmetries.

Moreover, the lattice structure of subgroups, reported in Figure 1, suggests quick
ways to check the fulfillment of concurrent symmetry properties by a single BCM.
For example, considering that {σ0, EH} is the Frattini subgroup of (Σ,⊗), i.e. the
intersection of all its maximal subgroups, suggests to explore symmetry properties
of a BCM starting from symmetry EHS which corresponds to the element of the
Frattini subgroup EH. In fact, if the BCM does not satisfy EHS, then the ensemble
of properties it satisfies cannot correspond to any subgroup of order higher than 2
(i.e., the BCM cannot possess more than one symmetry property) and we are allowed
to check only symmetry properties corresponding to subgroups of dimension 2, i.e.,
we can check only symmetries IS, EHIS, ES and HS to eventually conclude that the
BCM does not possess any symmetry property.

5 Examples of BCMs that concurrently satisfy feasible
combinations of symmetries

Let us now focus our attention to the existence of BCMs satisfying the possible
combinations of symmetries specified by Proposition 2: we are wondering if, for
each possible subgroup of (Σ,⊗), there exists at least one confirmation measure c
that satisfies all the corresponding symmetry properties (and only them) specified
by Proposition 2. In other terms, given the 10 equivalence classes individuated by
Proposition 2 in the set of BCMs, we want to understand if some of them are perchance
empty. In order to do that, we start defining two BCMs that, to the best of our
knowledge, were never defined before.
The first BCM we define is

EH2(H,E) =
P (H|E) + P (¬H|¬E)

P (¬E|H) + P (E|¬H)
− 1 . (1)

Interestingly, the measure EH2 can be recasted in a meaningful way using the lan-
guage of diagnostic tests. In fact, we can rewrite the numerator P (H|E)+P (¬H|¬E)
as PPV +NPV where PPV (Positive Predictive Value) denotes the proportion of po-
sitive predictions of a statistic test, while NPV (Negative Predictive Value) indicates
the proportion of negative predictions of the test. In a similar way, the denominator
P (¬E|H) + P (E|¬H) can be written as FNR + FPR where FNR (False Negative
Rate) and FPR (False Positive Rate) denote the proportions of positive conditions
which yield negative test outcomes and, respectively, of negative conditions which
yield positive test outcomes. The measure can therefore be rewritten as

EH2(H,E) =
PPV +NPV

FNR+ FPR
− 1 .
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The second BCM we propose is defined as

LEH2(H,E) = log
P (H|E) + P (¬H|¬E)

P (¬E|H) + P (E|¬H)
. (2)

The two BCMs are ordinally equivalent, in fact LEH2(H,E) = log(EH2(H,E) + 1)
but, as we will see, LEH2 satisfies more symmetry properties than EH2.
We can now state that for any feasible combination of symmetries there exist a BCM
satisfying exactly those properties. More precisely:

Proposition 3 There exist Bayesian Confirmation Measures that satisfy exactly one
of the following sets of concurrent symmetries:

(i) no symmetry property;

(ii) exactly one symmetry among IS, EHIS, EHS, ES and HS;

(iii) exactly IS ∧ EHS ∧ EHIS or EHS ∧ EIS ∧HIS or ES ∧HS ∧ EHS;

(iv) all the symmetry properties ES, HS, IS, EHS, EIS, HIS, EHIS.

Proof
For each possible set of symmetries we provide an example of a BCM that satis-
fies exactly those symmetries, we avoid here the tedious proof of all the symmetry
properties of the BCMs we recall.
i) The confirmation measure c1(H,E) =

√
P (E|H)−

√
P (E) proposed by Greco et

al. [17] doesn’t satisfy any symmetry property.
ii) Finch’s R(H,E) = P (H|E)/P (H)− 1 , Rips’s G(H,E) = 1− P (¬H|E)/P (¬H),
Mortimer’s M(H,E) = P (E|H) − P (E) and Carnap’s d(H,E) = P (H|E) − P (H)
(see [3] for more details) satisfy only IS, EHIS, ES and HS, respectively (for d and
M , symmetries ES, HS and EHS are proved in [17]). The BCM EH2 defined by
(1) satisfies (only) EHS symmetry.
iii) Considering the subsets of 3 symmetries, Cohen’s K [6]

K(H,E) =
[P (H|E)P (E) + P (¬H|¬E)P (¬E)− P (E)P (H)− P (¬E)P (¬H)]

[1− P (E)P (H)− P (¬E)P (¬H)]

and Nozick’s N , N(H,E) = P (E|H) − P (E|¬H) (see, e.g., [3]) are examples of
confirmation measures for which only {IS,EHS,EHIS}, and {ES,HS,EHS}, re-
spectively, are met. LEH2 defined by (2) satisfies (only) {EHS,EIS,HIS}.
iv) Finally, Carnap’s b(H,E) = P (E∩H)−P (E)P (H) (see [3]) possesses all symmetry
properties.
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7 Symmetries:
b (Carnap)

IS, EHS, EHIS:
K (Cohen)

EHS, EIS,
HIS: LEH2

ES, EHS, HS:
N (Nozick)

IS:
R (Finch)

EHIS:
G (Rip)

EHS: EH2
ES: M

(Mortimer)
HS: d

(Carnap)

no symmetry:
c1 (Greco

et al.)

Figure 2: Examples of BCMs that satisfy the feasible combinations of symmetries,
embedded in the subgroup lattice structure of (Σ,⊗).

6 Desirability and concurrent symmetry properties of a
BCM

Several authors have analyzed the desirability and, conversely, the undesirability of
particular symmetry properties of confirmation measures.

Among them, we first recall Eells and Fitelson [9] and Glass [14]; they argued that
an acceptable BCM should not exhibit symmetries ES, EHS and IS, they proposed
HS as the only compelling desideratum while they did not consider EHIS, EIS and
HIS symmetries at all. Along with Proposition 2, undesirability of EHS necessarily
implies that BCMs satisfying the concurrent symmetries in the sets {IS,EHS,EHIS},
{EHS,EIS,HIS}, and {ES,EHS,HS} should not be considered. At the same time,
any BCM for which either just one symmetry among IS, EHIS, EHS and ES is
met, or, even, if it satisfies all the seven symmetries, should be considered as not
adequate. Remark that those authors, implicitly assert that only BCMs that belong
to the equivalence class satisfying solely HS hold desirable symmetry properties.
Carnap’s d is an example of acceptable confirmation measure in Eells and Fitelson’s
framework. Crupi et al. [7] widened the set of the symmetries that an adequate BCM
should (or should not) satisfy; within their discussion, they distinguished the cases of
confirmation and disconfirmation. In case of confirmation, they argued that only HS,
HIS and EHIS can be considered as desirable properties, while all other symmetries
should be considered undesirable. In case of disconfirmation, they have proposed HS,
EIS and IS as properties that an adequate measure of confirmation should possess,
while the other symmetry properties were considered as not desirable. Rescher’s Z,
defined in [19], is an example of BCM that meets all the symmetry requirements con-
sidered desirable in [7], both in case of confirmation and in case of disconfirmation.
However, we can observe that, again, only HS was considered a desirable symmetry
in both situations in [7].

In the field of rule interestingness, Greco et al. [16] considered ES, EHS and HS
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as desirable properties, all the other symmetry properties were classified as undesi-
rable: it is interesting to recognise in their suggestion one of the possible coexistent
combinations of symmetries in the subgroup lattice structure of (Σ,⊗), i.e. the Klein
subgroup {σ0, E ,H, EH}. Considering the whole list of desirable/undesirable symme-
try properties, a good measure appears to be, for example, Nozick’s N (see Figure 2),
as Greco et al. [16] suggest; but, taking their suggestion in a less restrictive way, one
could consider acceptable also a BCM that satisfies just one of the symmetries {ES}
(like Mortimer’s M), {EHS} (as the above defined EH2) or {HS} (e.g., Carnap’s
d), hence assuming implicitly a quite larger group of acceptable BCMs.

More in general, given different contexts and opinions on which symmetry proper-
ties should be satisfied by a confirmation measure, Proposition 2, i.e., the lattice of
subgroups of (Σ,⊗), allows to determine quite easily whether (and which) symmetry
requirements may coexist or not.

7 Conclusions

Geometric, visual and analytical ways to compare the Bayesian Confirmation Measu-
res have already been suggested (see [3], [20], [21]). In particular, symmetry properties
were largely discussed by the literature (see, e.g., [4], [7], [9], [17], [21]).

A group theoretical approach allows a clear insight on symmetry properties, by
considering the isomorphism of the group of symmetry functions on sentences pairs
(see [7]) and the dihedral group D8. We observe that another, similar, group theo-
retic approach was already proposed by Susmaga and Szczȩch [21] but referring to
contingency tables and making use of the relation of symmetries to the permutation
group S4 of order 24.

In our case, the use of symmetry functions and the isomorphism with the dihedral
group of order 8 allows indeed a simpler statement of the concurrent properties of the
set of BCM symmetries. In fact, one of the results of the present paper concerns the
exploitation of the group structure to detect a representative BCM for each of the
10 equivalence classes determined by the possible sets of symmetries, as determined
by the subgroup lattice of the group of symmetry functions. The structure of the
subgroup lattice allows also to suggest ways to a faster proof of symmetry properties
of a BCM and a clear way to determine whether a BCM possesses desirable proper-
ties, where desirability is a concept which is defined by the literature, even if with
somewhat conflicting opinions.

In [5] we generalized our proposal to the case of fuzzy confirmation measures
(see [13]) and we are currently working on the possible extensions of our approach
to the case of BCMs which are defined in different ways in case of confirmation and
disconfirmation (see [7]), to the case of weak symmetries (see [18]).
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