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Abstract Heterogeneous responses to therapeutical treatments across patients and
over time is a common and serious problem for several diseases. Precision medicine
research focuses in developing procedures to take treatment decisions for the indi-
vidual patient using all the information available for the patient, including demo-
graphic and clinical variables and the response to the followed treatment. In this
paper we adopt category theory and the cluster analysis to achieve insight into spe-
cific disease pathways and patient subgroups. We analyze a longitudinal dataset of
patients affected by diabetic kidney disease (highly prevalent in type 2 diabetes) and
monitored at different time points in the response to various treatment regimes. This
analysis, based on distances between patients in different time points and in time
evolution, divides patients into clusters that show the relevant role of some variables
in affecting the progress of the disease.
Abstract L’eterogeneità nella risposta a trattamenti terapeutici tra pazienti e nella
sua evoluzione temporale rappresenta un problema comune a molte malattie. La
medicina di precisione si propone di sviluppare metodologie di supporto alle deci-
sioni di trattamento per ogni singolo paziente usando tutte le informazioni disponi-
bili sul paziente, includendo perciò le variabili demografiche, le variabili cliniche
e la risposta ai trattamenti. In questo lavoro noi adottiamo la teoria delle cate-
gorie e la cluster analysis per ottenere elementi informativi su diversi sviluppi della
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malattia nel tempo e sull’esistenza di gruppi di pazienti con comportamenti diversi.
Analizziamo un insieme di dati longitudinali relativi a pazienti con diabete di tipo 2
e complicazioni renali, osservati in differenti punti temporali con riferimento a un
insieme di variabili e alla risposta a differenti trattamenti. Questa analisi, basata
sulle distanze tra pazienti in successivi punti temporali, individua clusters di pazi-
enti e il ruolo di certe variabili nell’influenzare la progressione della malattia.

Key words: category theory, cluster analysis, DKD disease

1 Introduction

Precision medicine greatly profits from statistical and mathematical techniques to
envisage differences and similarities between patients, their treatments, and out-
comes. The increasing interest on these topics leads to a more extended development
and use of methodological procedures. One of the research areas where precision
medicine is currently considered is the treatment of diabetes of type 2, with kid-
ney clinical complication (DKD). DKD patients show significative heterogeneity
in the disease progress, and thus there is a clinical need for individualized treat-
ments. Patient clustering [1, 6] appears as a useful explorative way to achieve some
information about the evolution of the disease. We focus on a longitudinal dataset
of DKD patients from the DC-ren project,1 and we aim to highlight similarities be-
tween patients, in terms of initial conditions, therapeutical treatments, and responses
to the treatments. The dataset consists of mixed data, which include quantitative and
qualitative variables, concerning clinical-laboratorial data, socio-demographical as-
pects, and different treatment responses.
In this paper, we aim to derive clusters of patients observed in different time points,
where the clustering approach will be based on distances between patients. The
evaluation of distance between patients is an essential step to investigate patients’
characteristic profiles. In order to derive an integrated approach to visualize and
highlight dynamic patterns of the disease, we adopt the category theory, an abstract
branch of mathematics, developed to formalize the concept of transformations be-
tween transformations in a flexible way [4]. This approach is used in a variety of
areas of research, which include biology, physics, chemistry, and computer science
[2], and it is useful to investigate problems in an abstract way and visualize connec-
tions and temporal dynamics. In this framework, a category is constituted by objects
(points) and morphisms between them (arrows), and provides a clear way to model
similarity and equivalence. One of the most powerful ideas of category theory is
the notion of functor, which can be thought as a generalization of the concept of
function. A functor maps objects and morphisms from a category to objects and
morphisms of another category. A mapping between functors is a natural transfor-
mation, and leads to generate nested structures. The novelty of this work consists
in deriving an integrative approach to visualize and explore patterns in longitudinal

1 https://dc-ren.eu/
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data. Longitudinal data on DKD are collected in visits at baseline and in subsequent
follow-ups. We focus on the first three time points t0, t1, t2, comparing the response
to the therapy treatment of the set of patients. In order to evaluate the heterogeneity
of patients at different time points and how this heterogeneity evolves in time, we
evaluate matrices of distances between patients. We introduce D(t0) as the matrix of
distances between patients at time t0; D(t1) and D(t2) as the matrices of distances
between patients at t1 and t2, respectively. We also introduce D(t0, t1) as the matrix
of distances between D(t0), D(t1), and D(t1, t2) as the matrix of distances between
D(t1), D(t2). With this approach adopting category theory and cluster analysis, we
achieve a small set of clusters, which represent the most similar patients in their
behavior in time and response to the therapy treatments. These results will be very
helpful in building a decision system which allows to derive the best treatment for
each patient. The paper is organized as follows. In Section 2, we adopt elements
of the category theory to envisage a strategy for deriving matrices of distance be-
tween patients, and in Section 3, we build clusters of patients with respect to the
progression of the disease.

2 Method

In our analysis, we will consider a set of data concerning n patients, p variables, and
three time points t0, t1, t2. Each element is the observation x j

i (tk), where: i indicates
the individual (the patient), i = 1, ..., n; j indicates the variable (X j) on which we
observe x j

i , j = 1, ..., p; k indicates the time point, k = 0,1,2, and thus there are
three time points: t0 (also called baseline), and t1, t2 (the first and second follow-
ups, respectively). We define two kinds of distances: distance d j

i,i′(tk, tk) between
observations of variable j at the time k for different patients i, i′ = 1, ..., n (horizontal
distance); distance d j

i,i(tk, tk′) between observations of variable j through different
times k,k′ = 0,1,2 for patient i (vertical distance). Having built a set of distance
values, we can achieve an enriched category with metrics in R [4]. More precisely,
we can describe observations and distances as an enriched double category whose
objects are x j

i (tk) and whose morphisms are vertical and horizontal distances, as in
the following diagram 1.

x j
i (t0)

d j
ii′ (t0,t0)✲ x j

i′(t0)

x j
i (t1)

d j
ii(t0,t1)

❄
d j

ii′ (t1,t1)✲ x j
i′(t1)

d j
i′i′ (t0,t1)

❄

(1)

Observations for the same variable through time and patients constitute a lattice.
Horizontal composition shows comparisons between multiple patients at the same
time; vertical composition shows comparisons of the same patient through time.
Mappings from variables to variables can be formalized as functors. There is a lat-
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tice for each variable. These lattices are the vertical sections in the representation of
Figure 1 (left). In fact, observations and distances for each patient are represented
by transversal sections (Figure 1, right). Functors map a lattice into the other. The
outcomes (success/unsuccess) of the therapeutical treatment are evaluated through

Wthe variations of a response variable. Wee compute the dissimilarity matrices, to com-
Wpare patients and their disease time evolution. Wee evaluate as a first step the infor-

mation in the variable values of each patient at certain times. The i-th patient pi(t) is
described by the vector [xx1

i (tk),x
2
i (tk), ...,x

pp
i (tk)]. Each element of the dissimilarity

matrix is the distance between patients, as described in Figure 2.

tt
t
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Fig. 1 Representation of the dataset. Fig. 2 Representation of ma-
trix elements of D(tk).

coefTToo measure the distance, we adopt the ffificient s(pi, pi′) proposed in [5], which

takes the following expression: s(pi, pi′) =
∑p

j=1 s j(x j
i ,x

j
i′ )δ

j(x j
i ,x

j
i′ )

∑p
j=1 δ j(x j

i ,x
j
i′ )

, where: pi is the i-

th patient, pi′ is the i′-th patient, s j is based on the Gower similarity [3], x j
i is the

value of the j-th variable for the i-th patient, x j
i′ is the value of the j-th variable for

the i′-th patient; δ j(x j
i ,x

j
i′) coefis a ffificient to be 0 if pi or pi′ have a missing value

for the j-th variable, and 1 if they do not. The elements of the dissimilarity matrix,
describing the distance between patients, are computed as d(pi(tk), pi′(tkk)) = 1−
s(pi(tk), pi′(tkk)) dif. The dissimilarity matrices, computed at ffferent time points, are
then D(t0), D(t1), D(t2), and on these matrices we build matrices of distances of
distances D(t0, t1), D(t1, t2).

3 Results

In order to evaluate the behaviors of patients with respect to variables and therapeu-
tical treatments, we build clusters of patients according to the measures of distance
described in Section 2. The dataset, used in the DC-ren project and based on the

VPROOVAALID study,2 is about diabetic kidney disease (DKD), with n = 241 patients
observed in longitudinal way in three data points and p = 21 variables, which in-
clude clinical and social-demographic variables and treatment responses. In order to
find clusters of patients, we build matrices of distances between patients at the three
data points, D(t0), D(t1), D(t2), and, based on them, matrices of distances between
distances D(t00 t1) D(t1 t2) The data are collected at baseline (t0) and follow upsttdistances, D(t00, t1), D(t1, t2). The data are collected at baseline (t0) and follow-ups

2 SysKid project https://cordis.europa.eu/project/id/241544/
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Categories and Clusters to investigate Similarities in Diabetic Kidney Disease Patients 5

(t1, t2), and contain information on the therapy adopted. The patients received four
different treatments, a1, a2, a3, a4. The outcome is a binary variable, indicating suc-
cess or unsuccess of the therapeutical treatment. In this paper, we adopt the hierar-
chical clustering method without deciding a priori the number of clusters.

0.0

2.5

5.0

7.5

10.0

12.5

value

Fig. 3 Matrix D(t0, t1). (Darker blue
indicates a greater dissimilarity).
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Fig. 4 D(t1, t2). (Darker blue indicates
a greater dissimilarity).
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Fig. 5 Dendrogram of D(t0, t1).
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Fig. 6 Dendrogram of D(t1, t2).

To obtain D(t0, t1), represented in Figure 3, we compute D(t0) associated with the
distances between patients at t0, and matrix D(t1) associated with the distances be-
tween patients at t1, both evaluated with Gower distance. To obtain D(t1, t2), repre-
sented in Figure 4, we follow the same procedure. The sequence of clusters obtained
by using a hierarchical clustering is visualized through the Ward dendrogram by us-
ing the matrices D(t0, t1) and D(t1, t2), and we achieve K = 3 as the optimal number
of clusters. The height of the dendrogram is the distance between the clusters, as
shown in Figures 5 and 6. In our study, the comparison between four linkage meth-
ods (average, single, complete, ward), shows that the Ward-type linkage method
identifies the better clustering structure. The Ward method finds the distance be-
tween two clusters as the minimum within-cluster variance. In Table 1, we can see
that the mean values of the vast majority of the variables within clusters 2 and 3 in
D(t0, t1) and the variables within clusters 1 and 3 in D(t1, t2) do not show significant
differences. On the contrary, we notice relevant differences in cluster 1 in D(t0, t1)
and cluster 2 in D(t1, t2). In particular, the patients in these clusters present higher
body mass index (BMI) and triglyceride values, while the levels of HbA1c, choles-
terol HDL, and estimated Glomerular Filtration Rate (eGFR) are lower. In particular,
the mean eGFR of these patients is <60 mL/min/1.73 m2, which increases the risk
factor to cardiovascular disease. Figure 7 shows the boxplots of clusters of patients
for different treatments and different eGFR levels. The 47.3% of patients in cluster 1
in D(t0, t1), is present in cluster 2 in D(t1, t2). These patients are mostly treated with
a1 and a3. The 66% of them had unsuccessful outcome in D(t0, t1) and D(t1, t2).
From this analysis, it is possible to find groups of patients with behaviors different
between them, and with respect to the time evolution of the disease.
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Table 1 Description of the clusters of distances between patients: D(t0, t1) and D(t1, t2), with vari-
able mean values and standard deviation values within within brackets.

D(t0, t1) D(t1, t2)
Variables cluster1 (n= 38) cluster2 (n= 100) cluster3 (n= 103) cluster 1 (n= 103) cluster 2 (n= 34) cluster 3 (n= 104)

eGFR 55.13 (± 21.59) 65.65 (± 18.34) 62.73 (± 17.71) 62.14 (± 17.88) 57.24 (± 21.90) 59.25 (± 17.27)
Age 66.55 (± 11.38) 69.55 (± 7.81) 66.10 (± 8.35) 68.03 (± 7.76) 65.82 (± 11.52) 65.38 (± 8.60)
BMI 34.74 (± 9.74) 30.87 (± 6.52) 30.27 (± 5.81) 31.24 (± 6.76 ) 33.90 (± 10.45) 30.10 (± 5.98 )
Body weight 96.68 (± 22.35) 85.43 (± 16.35) 85.32 (± 13.97) 86.38 (± 17.00) 94.62 (± 24.09) 84.88 (± 14.05)
Systolic 137.29 (± 15.80) 137.08 (± 14.22) 135.22 (± 14.44) 136.99 (± 14.07) 135.29 (± 16.19) 133.73 (± 14.45)
Diastolic 76.87 (± 10.36) 77.57 (± 9.19) 75.72 (± 10.34) 75.97 (± 8.72) 76.88 (± 10.51) 76.20 (± 9.22)
Blood glucose 164.63 (± 78.84) 148.84 (± 50.50) 146.02 (± 48.59) 150.81 (± 62.27) 162.97 (± 74.99) 146.05 (± 44.79)
Hba1c 7.65 (± 1.58) 7.16 (± 1.16) 7.28 (± 1.30) 7.35 (± 1.41) 7.69 (± 1.24) 7.12 (± 1.12)
Serum creatinine 1.37 (± 0.46) 1.06 (± 0.33) 1.08 (± 0.31) 1.13 (± 0.41) 1.29 (± 0.46) 1.16 (± 0.39)
Serum cholesterol 194.03 (± 53.31) 184.37 (± 51.58) 181.45 (± 43.61) 178.25 (± 43.29) 184.32 (± 42.98) 178.80 (± 43.64)
Serum cholesterol LDL 99.58 (± 32.36) 99.09 (± 35.50) 98.68 (± 32.98) 94.09 (± 28.24) 92.11 (± 33.25) 95.27 (± 27.59)
Serum cholesterol HDL 46.26 (± 14.85) 52.18 (± 15.84) 49.07 (± 12.77) 50.21 (± 15.96) 46.94 (± 22.31) 49.81 (± 13.70)
Serum triglycerides 211.39 (± 124.06) 176.37 (± 103.07) 172.66 (± 119.14) 180.36 (± 168.67) 247.88 (± 152.54) 167.35 (± 81.73)
Serum potassium 4.61 (± 0.60) 4.56 (± 0.48) 4.55 (± 0.46) 4.53 (± 0.50) 4.62 (± 0.60) 4.52 (± 0.55)
Hemoglobin 13.64 (± 1.81) 13.48 (± 1.45) 13.74 (± 1.45) 13.39 (± 1.63) 13.93 (± 1.53) 13.33 (± 1.68)
Serum albumin 4.38 (± 0.48) 4.51 (± 0.43) 4.53 (± 0.54) 4.44 (± 0.50) 4.57 (± 0.63) 4.48 (± 0.47)
Crp 0.51 (± 0.53) 0.61 (± 1.23) 0.51 (± 1.08) 1.01 (± 3.01) 0.48 (± 0.47) 0.51 (± 1.04)
Mean uacr 173.37 (± 379.24) 48.63 (± 124.42) 23.58 (± 33.45) 69.52 (± 180.33) 168.19 (± 364.34) 31.06 (± 66.02)
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Fig. 7 Box plots of clusters of patients for the different treatments and different eGFR levels. Top:
D(t0, t1). Bottom: D(t1, t2). Drug a1 is RASi, a2 is SGLT2i, a3 is GLP1a, and a4 is MCRa.
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