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The geography of COVID-19 spread in Italy and
implications for the relaxation of confinement
measures
Enrico Bertuzzo 1,2, Lorenzo Mari 3, Damiano Pasetto 1, Stefano Miccoli 4, Renato Casagrandi 3,

Marino Gatto 3 & Andrea Rinaldo 5,6✉

The pressing need to restart socioeconomic activities locked-down to control the spread of

SARS-CoV-2 in Italy must be coupled with effective methodologies to selectively relax

containment measures. Here we employ a spatially explicit model, properly attentive to the

role of inapparent infections, capable of: estimating the expected unfolding of the outbreak

under continuous lockdown (baseline trajectory); assessing deviations from the baseline,

should lockdown relaxations result in increased disease transmission; calculating the isolation

effort required to prevent a resurgence of the outbreak. A 40% increase in effective trans-

mission would yield a rebound of infections. A control effort capable of isolating daily ~5.5%

of the exposed and highly infectious individuals proves necessary to maintain the epidemic

curve onto the decreasing baseline trajectory. We finally provide an ex-post assessment

based on the epidemiological data that became available after the initial analysis and estimate

the actual disease transmission that occurred after weakening the lockdown.
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A lthough the pandemic caused by SARS-CoV-2 is still
ravaging most countries of the world1,2 and containment
measures are implemented worldwide3, a debate is

emerging on whether these measures might be partially
alleviated, and in case how and when4–9. This discussion requires
appropriate models that guide decision-makers through alter-
native actions via scenarios of the related trajectories of the
epidemic.

The setup of country-wide epidemiological models10,11 is
particularly challenging for SARS-CoV-2 owing to inapparent
infections12–14, and to the marked spatial heterogeneity of the
epidemic spread11. For example, in Italy, where the (largely
underestimated) reported infections and deaths were, respec-
tively, 207,428 and 28,236 as of May 1, the latitudinal characters
of the spread of infections showed marked delays in the beginning
of the local outbreaks11.

To make things even more complicated, empirical evidence
suggests that mildly symptoma infectious individuals could be as
contagious as symptomatic ones12,15. Pre-symptomatic infectious
cases are also an important vehicle of infection, as epitomized by
the value of the pre-symptomatic transmission parameter, which
proves larger than the transmission rates of symptomatic and
asymptomatic infections11. This is supported by field epidemio-
logical evidence16–18 and virological findings reporting cases of
COVID-19 fueled by strong pre- or oligo-symptomatic trans-
mission19–21 and shedding22.

We base our analysis on a recently published, spatially explicit
model of the COVID-19 spread in Italy, inclusive of mobility
among communities, the timing of infection seeding, mobility
restrictions and social distancing11. We assume that, for the time
being and in the near-term, no imported infections occur from
outside the national boundaries. The model is a spatial system of
coupled ordinary differential equations that solves in time, and
for each of the 107 Italian provinces, the balance of, and the
coupled fluxes among, several epidemiological compartments in
which the total population of a community is subdivided. Spe-
cifically, we describe the dynamics of individuals who are sus-
ceptible, latently infected, at peak infectivity, asymptomatic/
mildly symptomatic, infected with heavy symptoms, and recov-
ered (see “Methods” section). Local communities are connected
by mobility fluxes of individuals from the mobile epidemiological
compartments (susceptible, exposed, peak infectivity, asympto-
matic/mildly symptomatic, and recovered individuals). Thus, the
force of infection of each community (see “Methods” section)
depends not only on the local epidemiological variables, but also
on those of the connected communities. Infections, therefore, not
only do occur within each community, but can also be imported
from, or exported to, linked communities. In addition, the model
accounts for infections occurring because individuals of different
communities meet in a third location. The relative balance of the
fluxes among the various compartments is regulated by process
parameters that are estimated in a Bayesian framework (see
“Methods” section).

The fundamental improvements of our framework with respect
to other non-spatial, well-mixed models initially devised for
single megacities23, or for a whole country24, lie in the detailed
description of the geographic context and its networks of epide-
miological interactions. Therefore, we have updated the bench-
mark model11 through the estimation of parameters using the
number of daily hospitalized cases in all 107 Italian provinces
from February 24 to May 1 (see “Methods” section). To estimate
parameters, we account for the set of progressively more
restrictive measures that were introduced from February 22
(initial restrictive measures) to March 22, when Italy went into a
full lockdown closing also non-essential industrial and other
production activities25–27.

Available epidemiological data28–30 must be viewed as an
approximation. In fact, confirmed infections depend on testing
efforts that local officials were able to deploy to identify con-
firmed infections, thus leading to under-reporting. The ratio of
confirmed to actual infections was estimated to be around 10%11.
Under-reporting applies even to fatality counts, although to a
lesser extent with respect to reported infections31,32. Moreover,
fatality rate can change in time due to stress in health care
facilities32. In order to alleviate these problems, in this work we
used for parameter estimation only reconstructed data on daily
rates of hospitalization (see “Methods” section).

Health-policy and science underpin the design of suitable
containment strategies, which include individual and collective
(local and medium- to long-distance) mobility limitations25,
provision of personal protective equipment (PPE)33, massive,
possibly targeted identification of infectious cases34,35, and the
setup of layers of administrative and environmental engineering
controls33. These strategies must consider the level of connectivity
realized among communities after lockdown release, and the
different epidemiological parameters that effectively characterize
them10,11. Recent results on the effects of lifting restrictions in the
Boston area suggest that a response system based on enhanced
contact tracing and testing can have a major role in relaxing social
distancing interventions in the absence of herd immunity against
SARS-CoV-236.

Here, we generate scenarios of the Italian infection dynamics
resulting from the bulk effect of lifting the current restrictions,
which initiated on May 4. How will the modes of relaxation of
previous confinement measures affect residual epidemic trajec-
tories? The answer to this question is not trivial, because different
activities will be allowed to resume at different times. In addition,
acquired awareness may have different lasting effects on social
behavior regardless of imposed measures, and compliance to
proper use of PPE33 may fade away in time. Here, we propose to
assess the actual change in overall transmission by tracking the
departure of the epidemic curve from the one projected by using
the transmission rate achieved during the lockdown. We then
address the mitigation of the likely increased exposure, in parti-
cular by estimating the sufficient number of case isolation
interventions that would prevent rebounding of the epidemics.
Finally, we provide an ex-post assessment of the explored sce-
narios comparing them with the actual space-time progression of
the outbreak as measured by the epidemiological data that
became available after the initial submission of this study.

Results
Parameter estimation and model results. The model reproduces
well the prevalence of cumulative hospitalizations in the 107
Italian provinces up to May 1 (Figs. 1 and 2). By considering
heterogeneous transmission rates after March 22 (see “Methods”
section), we estimate a large reduction in the effective disease
transmission rate in each province. This reduction, expressed as a
ratio of effective transmission estimated on May 1 to the initial
uncontrolled one, ranges between 0.3 and 0.4 depending on
location (Fig. 1d). Technically, this reduction is computed via the
product of the reduction in transmission rates (βP3=βP0 , see
“Methods” section) times the fraction of the population still
susceptible to the infection on May 1. The latter, however, is very
sensitive to the fraction of infections that develop heavy symp-
toms (parameter σ in the model, see “Methods” section). The
reference value assumed is σ= 25%, which is consistent with
empirical evidence10. However, we carried out a sensitivity ana-
lysis to investigate the role of inapparent infections12 by repeating
parameter estimation with σ= 10% and 50% as well, thus cov-
ering a broad enough spectrum of possible values. All other
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Fig. 1 Geography of COVID-19 spread in Italy. The comparative analysis of data and model results for hospitalizations in 107 Italian provinces as of May 1,
2020 is supported by: a a sketch of the Italian regions; b, c the prevalence of cumulative hospitalizations in each Italian province up to May 1, reconstructed
data (b) and model simulations (c); d ratio between the estimated transmission rate on May 1, and the one estimated at the beginning of the outbreak
(February 24).
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Fig. 2 Daily numbers of newly hospitalized cases for Italy and its hardest hit regions. Shown here are reconstructed data (empty circles), and model
results (solid lines and confidence intervals). Clockwise from top: Italy, Lombardia, Piemonte, Marche, Veneto, and Emilia Romagna. The remaining regions
are shown in Supplementary Fig. 1. The blue solid line represents the baseline scenario, i.e., the median of the computed results with transmission
estimated during lockdown maintained indefinitely beyond May 3, 2020. The green and purple solid lines represent the scenarios corresponding to a
release of the containment measures determining an effective increase in the overall transmission rates of, respectively, 20% and 40%. The 95%
confidence intervals are color-coded in analogy to their median scenarios. Plots refer to a fraction of infections leading to heavy symptoms σ equal to 25%.
Plots referring to the other two values considered (σ= 50% and 10%) are reported in Supplementary Figs. 2 and 3.
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parameters, whose meaning is detailed in the “Methods” section,
are reported in Table 1.

Scenarios of national and regional epidemic trajectories. If the
transmission rates estimated at the end of the lockdown persisted
indefinitely, the epidemic curve would continue to decrease in all
Italian regions (baseline scenario, blue curve in Fig. 2), although
at different rates. We report for convenience daily hospitalization
counts aggregated for administrative regions, although the model
accounts for a finer spatial granularity (107 provinces and
metropolitan areas, see Fig. 1).

The lockdown in Italy has been relaxed on May 4. Here, we
propose to assess the actual increase in overall transmission of the
infection by tracking the departure of the residual epidemic curve
from the baseline scenario. This allows us to estimate the overall
effect of the new exposure caused by the local lockdown
relaxations. An increase of 20% in the transmission rate,
subsumimg the effective combination of economic activities’
resumption and modified contact rates, yields a decline milder
than that of the baseline for the new daily hospitalization cases in
most Italian regions. A 40% increase would instead determine a
significant rebound of the epidemic in most regions (Fig. 2, see
also Supplementary Fig. 1).

The trajectories shown in Fig. 2 prove robust with respect to
the assumed value of σ, at least for the relatively short projection
horizons considered here, which are relevant to contingency
planning. Indeed, the curves in Fig. 2, obtained with σ = 25%,
compare well with those reported in Supplementary Figs. 2 and 3,
obtained by assuming σ = 50% and 10%, respectively.

The fraction of susceptible individuals obtained for different
values of σ, the heavy symptomatic fraction, strongly varies
throughout the Italian regions (Fig. 3). Since the beginning of the
epidemic up to May 1, the susceptible fraction of the population
has decreased more markedly in the northern regions, which have
been more severely hit by the outbreak, with the minimum values
reached in Lombardia (0.97, 0.95, and 0.87 with σ= 50%, 25%,
and 10%, respectively). By contrast, central and southern regions
had minimal reductions of their susceptible fraction. These results
bear obvious implications on possible revamping of the epidemics
reaching new peaks of dangerous proportions, as it denies any
short- or medium-term possibilities to attain herd immunity.

Different assumptions for σ result in different values of the
infection fatality rate (IFR), defined as the ratio between the

official death count (at a certain date) and the corresponding total
number of infections estimated by the model. As of May 1, we
estimate an IFR of 4%, 2%, and 0.8%, respectively for σ = 50%,
25%, and 10%.

Isolation effort. Isolation of cases to counterbalance the possible
increase in transmission following the relaxation of the restrictive
measures is a conceivable strategy, alternative to extending
lockdown or to stop-and-go enforcement of containment mea-
sures6. The isolation effort critically depends on tracing and
testing. Evidence of peak of viral shedding before and right after
symptom onset15 (see also “Methods” section) suggests that iso-
lation is more effective if targeted at incubating individuals, i.e.,
those in the exposed, E, and peak of infectivity, P, compartments
of the model (according to the parameters reported in Table 1,
around 86% of the infections occur through contact with an
individual at peak infectivity). We therefore focus on the E and P
compartments and estimate the percentage and the correspond-
ing number of individuals that should be isolated daily (Fig. 4, see
“Methods” section) to counterbalance a possible increase in
transmission resulting from the loosening of the containment
measures, thus maintaining the epidemic curve in the decreasing
trajectory achieved during the lockdown (blue lines in Fig. 2). In
analogy to the analyses presented above, we show results under
the three different assumptions about the heavy symptomatic
fraction: σ = 50%, 25%, and 10%.

Figure 4 also reports the estimated abundances of exposed, E,
and individuals at peak infectivity, P, in the considered regions at
the date of the announced new measures (May 4), along with the
expected number of new daily symptomatic cases (C) predicted
by the model. As an example, in Lombardia an increase in
transmission of 40% would lead to a rebound of the epidemic
curve (Fig. 2). However, for the reference value of σ = 25%, daily
isolation of about ~1200 out of ~22,000 (~5.5%) individuals
belonging to the E and P compartments would effectively
counterbalance the increase in transmission and bring back the
curve to the baseline scenario (blue curve in Fig. 2). The reported
isolation target in terms of the number of individuals to be
isolated (left axis of Fig. 4) refers to the necessary effort right after
the relaxation of the containment measures. If the epidemic is
successfully controlled, and the cases continue to decline (i.e.,
they follow the baseline scenario), the isolation effort propor-
tionally decreases over time. The isolation effort in terms of

Table 1 Model parameters.

Parameter Units Median 95% CI Information

βP0 (d−1) 1.26 [1.24, 1.28] Estimated

1/δE (d) 4.6 15,26

1/δP (d) 2 15,26

1/η (d) 5 52

1/γI (d) 14 11

1/αI (d) 25 11

βA/βP (1) 0.022 [0.020, 0.030] Estimated
βI/βA (1) 1 11,12

βP1=βP0 (1) 0.89 [0.87, 0.92] Estimated

βP2=βP1 (1) 0.72 [0.70, 0.73] Estimated

Mean βP3=βP2 (1) 0.50 [0.48, 0.51] Estimated

Standard deviation βP3=βP2 (1) 0.038 [0.025, 0.053] Estimated

Δt0 (d) 35 11

ω 1 2.42 [2.33, 2.52] Estimated

The posterior distribution of the parameters marked as estimated was sampled through the DREAMZS implementation of the Markov chain Monte Carlo algorithm53. For all estimated parameters, we
used uninformative priors within biologically meaningful boundaries. Following our previous application11, we assumed σ = 0.25, rS = 0.5, ζ = 0.45, and rE = rP = rA = rR = rS, whereas rI = rQ = rH = 0.
Moreover, γQ = γI = γH, γA = 2γI, and αH = αI.
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percentage of E and P individuals to be isolated (right axis of
Fig. 4) remains instead constant.

Although the isolation effort expressed as percentage of the E
and P individuals to be isolated daily is not particularly sensitive
to the assumed fraction of infections developing heavy symptoms,
σ, the value changes markedly when expressed in terms of the
absolute number of individuals (Fig. 4). As σ decreases, a larger
fraction of the epidemic remains unobserved. Therefore, to
closely match the daily hospitalizations data, a much larger pool
of E and P individuals is estimated (Fig. 4).

To assess the feasibility of the isolation effort required to
contain the epidemic, we report the amount that can be achieved
by tracing and isolating all the infections generated by the new
daily symptomatic cases (black dashed lines in Fig. 4). For a given
increase in transmission, a required effort (solid lines in Fig. 4)
exceeding such amount implies that tracing and isolation of all
primary infections generated by the new daily symptomatic cases
is insufficient. In this case, secondary infections (i.e., infections
generated by the primary infectees) need also to be targeted. As
the role of the unobserved epidemic increases (i.e., σ decreases,
from left to right columns in Fig. 4), isolation of primary contacts
alone can compensate only for mild increases in transmission.

The timing of the relaxation of the restrictive measures also has
a great impact on the isolation effort required to control the

epidemic. Delaying the release of containment measures by an
additional month would have reduced the abundance of E and P
individuals by about two-thirds, thus proportionally reducing the
number of individuals that need be isolated (Supplementary
Fig. 7).

Ex-post assessment. The analysis presented above was based on
data up to May 1, 2020 (see also ref. 37). Data that became
available afterward allows for ex-post assessments of the trajec-
tories projected in Fig. 2. Among the three scenarios explored, the
actual progression of the outbreak in the Italian territory after the
lifting of lockdown measures is consistent with the baseline sce-
nario (Fig. 5). Some regions, notably Piemonte, exhibit a case
count significantly lower than the one predicted by the baseline
scenario. To properly quantify such variations in the outbreak
dynamics, we re-estimated model parameters including the newly
data available (up to June 17, 2020) and an additional parameter
controlling the transmission after lockdown was relaxed (see
“Methods” section). As the newly available data starts before the
end of the lockdown (May 1 vs May 4) and there is an intrinsic
delay before variations in transmission appear in hospitalization
data, the new parameter estimation exercise enables also an
updated evaluation of transmission occurring in the last phase of
the lockdown (parameter βP3 , see “Methods” section).
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Fig. 3 Mapping possible acquired immunity in Italy. Temporal dynamics of the fraction of susceptible individuals in each region, estimated by considering
three possible percentages of heavy symptomatic infections: σ = 50% (blue curve), 25% (green curve), and 10% (red curve). Thick solid curves refer to
medians values, whereas shaded areas indicate the 95% confidence intervals.
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The results of our analysis (Fig. 5 and Table 2) show that most
regions experienced a decrease of the median transmission rate
between the last phase of the lockdown and the following period.
Notably, Lombardia, the most severely hit region that accounts
for 39% of total Italian cases to date and 54% of those occurred
after lockdown relaxation, and Molise are estimated to have
experienced an increase in the median transmission (but note that
the estimate for Molise, one of the smallest Italian region by
number of residents and among the least hit by COVID-19, is
marked by large uncertainty). At the country scale, the aggregate
count of new daily hospitalized cases is slightly lower than the
baseline scenario (Fig. 5).

Discussion
The results obtained with the data up to the end of lockdown,
whose reliability to issue scenarios stems from their capability to
closely match the hospitalization data locally and globally, probed
in particular the role of inapparent infections by assuming a
rather broad range of values of σ. The highest value (σ = 50%)
matches the empirical results found by testing for two weeks an
entire community (Vo’ Euganeo, IT, ~3000 inhabitants)12,
whereas the lowest (σ = 10%) is likely to be a lower bound,
unachievable in the actual geographic context, because it may
reflect also the age structure of a much younger population38.

Another way to assess the plausibility of the assumed fraction of
infections that develop heavy symptoms, is to compare the IFR
estimated with different values of σ. The values of IFR corre-
sponding to σ = 25% and σ = 10% (2% and 0.8%, respectively)
bracket the available estimates of IFR for western countries39.
Thus the median value assumed (σ = 25%) seems like a sensible
choice to probe the actual role of the unobserved epidemics
in Italy.

Social distancing, PPE use, reduced or impeded mobility, and
increased awareness led to an overall decrease of transmission of
about 65% with respect to the initial uncontrolled epidemic
(Fig. 1d). This result is consistent with other estimates obtained
using different methods40,41, and is largely attributable to the
implemented measures, and only marginally to acquired immu-
nity. Indeed, even in the most extreme scenario considered here
(σ = 10%), the acquired immunity would be responsible for less
than 15% of the reduction occurred in the most severely hit
region (Lombardia, Fig. 3), suggesting that herd immunity is far
away even in the hardest hit territories. Seasonality effects5, not
explicitly accounted for here, might also have had a role in the
reduction of transmission.

The scenarios shown in Fig. 2 suggest the impact of social
distancing, testing, contact tracing and household quarantine
on a possible second-wave of the COVID-19 epidemic in Italy
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values of the symptomatic fraction σ: 50% (left, blue), 25% (center, green), and 10% (right, red). Solid lines refer to median values, shaded areas to the
95% (lighter shade), and 50% confidence intervals. In each panel, median and 95% confidence interval of E, P and new daily symptomatic cases (C) are
given (estimates refer to May 4). The dashed black lines indicate the estimated number of E and P individuals that can be isolated by tracing all the
infections generated by the new daily symptomatic cases. The other Italian regions are shown in Supplementary Figs. 4, 5, and 6.
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(see also ref. 36). The heterogeneous estimates of transmission
achieved in the last phase of the lockdown (Fig. 1d) translate in
a differential regional response to a possible increase in trans-
mission. Noticeable, the heavily hit region of Lombardia would
withstand an increase of +20% of transmission without a
rebound of the number of new daily cases (Fig. 2) because our
estimates indicate that virus transmission was substantially

reduced during the lockdown. By comparison Piemonte, a
region that shares with Lombardia a similar susceptibility
profile (Fig. 3), might witness a rebound in the same scenario
because virus transmission is estimated to still be sustained at
the end of the lockdown (Fig. 1d). Such differential spatial
effects highlight the relevance of properly accounting for the
geography of the disease and to design tailored parameter
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Fig. 5 Ex-post assessment. Daily numbers of newly hospitalized cases for Italy and its hardest hit regions. Clockwise from top: Italy, Lombardia, Piemonte,
Marche, Veneto, and Emilia Romagna. The remaining regions are shown in Supplementary Fig. 8. Red empty circles represent data available for the
projection of the scenarios presented in Fig. 2, gray empty circles show the newly available data. Blue colors (solid line: median results, shaded area: 95%
confidence intervals) report here, for the sake of comparison, the baseline scenario already presented in Fig. 2. Black colors show the results of the updated
parameter estimation that exploits all data available up to June 17.

Table 2 Ex-post assessment of transmission rate.

Region βP4
=βP3

� 1 Region βP4
=βP3

� 1

Piemonte −22% (−26%, −18%) Marche −27% (−39%, −15%)
Valle D’Aosta −43% (−69%, −18%) Lazio −28% (−34%, −22%)
Lombardia +8% (+6%, +11%) Abruzzo −10% (−23%, +2%)
Trentino A.A. −24% (−41%, −8%) Molise +8% (−24%, +39%)
Veneto −23% (−31%, −15%) Campania −25% (−33%, −18%)
Friuli V.G. −10% (−22%, +2%) Puglia −34% (−42%, −26%)
Liguria −17% (−24%, −8%) Basilicata −28% (−54%, −1%)
Emilia Romagna −20% (−26%, −14%) Calabria −20% (−40%, −2%)
Toscana −17% (−24%, −9%) Sicilia −29% (−40%, −21%)
Umbria −36% (−66%, −8%) Sardegna −55% (−72%, −36%)

Changes of the estimated transmission rate after the relaxation of the lockdown for the 20 Italian regions. Median values and 95% confidence intervals.
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estimation frameworks capable of capturing heterogeneity in
transmission.

An observed deviation of incoming epidemiological data from
the baseline scenario in Fig. 2 (say, towards an unacceptable
epidemic trajectory like the purple curve) should raise a red flag
and call for control action. Matching the right scenario in real
time may be achieved through data assimilation and ensemble
Kalman filtering10. The continuous update of the estimated state
and parameters of the system, in fact, would allow the coupling of
feedback and feed-forward controls, thus projecting the number
of apparent and inapparent infections at least a latency period
ahead of time. Incidentally, we deem this feature a significant
advance produced by our method. Indeed, this procedure would
provide—in time for action—a reasoned assessment of the actual
exposure, in particular the number of exposed and infectious
individuals that only models can evaluate. This is tantamount to
distinguishing, after lifting the lockdown, between potential and
realized transmission. The former is the maximum possible
prevention of contagion given a set of rules. The latter is the bulk
effect of the effective compliance to precautions associated with
the relaxation of the lockdown. Thus, an increase in estimated
exposure reflects the actual collective behaviors of mobile indi-
viduals, and the collective respect of rules regarding social dis-
tancing, PPE adoption, or crowding, to name a few. We argue
that realized transmission can only be evaluated from early signs
decoded from scenarios implemented through a model akin
to ours.

Control may consist in either re-tightening of the containment
measures, possibly of the stop-and-go type5,8, or alternative
interventions. Although the strategy adopted during the first
phase of the outbreak mostly relied on the isolation and treatment
of symptomatic cases, a different mix of interventions is possible
and desirable for the second phase. A keystone of such a mix
should be an increased isolation effort by tracing42 and testing6,34

individuals who have been in close contact with a known infec-
tion26,43, possibly with the help of technological advances like
tracing apps35.

We estimated the isolation target needed to counterbalance an
increase in effective transmission (Fig. 4), and to maintain the
epidemic trajectory onto the decreasing pattern achieved during
lockdown. One way to achieve the required isolation target is to
trace the close contacts of daily new symptomatic cases, who are
more likely to self-report or be otherwise identified. It should be
noted, however, that infected individuals might not immediately
test positive (e.g., individuals that are categorized in the exposed
compartment E are unlikely to be detected, see, e.g., ref. 44).
Moreover, obtaining test results takes time, therefore this strategy
might imply, as a matter of precaution, to isolate, at least tem-
porarily, all close contacts that the symptomatic case has had in
the previous days. Tracing and isolating all primary infections
generated by the symptomatic cases is a challenging task, because
tracing is hardly exhaustive and not all symptomatic cases can be
identified. Depending on the extent of the unobserved epidemic,
however, isolation of primary infections might not suffice (Fig. 4).
Secondary contacts ought to be targeted as well in this case.
Testing primary contacts would help identifying actually infected
cases, thus refining the tracing of secondary contacts34. We also
showed that, if the isolation target proves impossible to achieve
for the limits of resources and/or logistical reasons, a possible
strategy may consist in delaying further relaxations of confine-
ment measures. Our results thus suggest that each Italian region
should carefully evaluate its current strategies for tracing, testing
and its isolation capacity, to plan and manage the second phase of
the epidemic.

The ex-post assessment of the projected scenarios, provided
in Fig. 5 and Table 2, shows that the likely increase in contact

rate among individuals following the partial relaxation of the
restrictive measures that began on May 4 did not lead to a
significant increase in transmission rate as of June 17. A notable
exception is Lombardia, the most populated Italian region and
the one struck the hardest by the epidemic, which is instead
estimated to have experienced an increase in the virus trans-
mission. Several intertwined factors could explain these pat-
terns of disease progression after lifting the lockdown. In the
following we discuss what we deem most relevant. Restrictive
measures have been only partially released: education, from
pre-school to higher education, will resume in-presence activ-
ities only in September; large gatherings are still forbidden;
every commercial activity and workplace is still subject to
stringent protocols to ensure social distancing and avoid
infections; PPE are mandatory in every indoor setting but one’s
own household and recommended outdoors whenever pre-
venting social contact is not possible. Altogether, these mea-
sures may have contributed significantly to avoid a
recrudescence of virus transmission. In particular, evidence
accumulates for the crucial role of face masks in reducing
transmission45,46.

Although there is no public data set about contact tracing and
isolation, anecdotal evidence and news reports suggest that the
effort in such direction has improved in many regional health
departments. In our updated estimation (Fig. 5), we did not
explicitly account for this effort; however, as detailed in the
analysis presented in Fig. 4, increased isolation effort is expected
to have the same macroscopic effect as reduced transmission. The
abatement of the number of cases achieved during the lockdown
period has arguably facilitated the logistics of contact tracing and
isolation. It is interesting to note, in fact, that Lombardia—still
counting dozens of new daily cases, which in turn makes contact
tracing challenging—is the only region showing a significant
increase in transmission.

Some authors have suggested that COVID-19 transmission
may be subject to seasonal variations in analogy with other
human coronaviruses (see, e.g., ref. 5). However, this hypothesis is
still debated among experts, and a clear evidence has not emerged
yet. Should warmer, drier weather be proven to actually hinder
transmission, such factor could have played a role in Italy during
the timeframe analyzed herein.

During lockdown, transmission was reportedly sustained also
by epidemic foci in long-term care facilities and hospitals. Suc-
ceeding in controlling these mostly local infection chains would
have reduced the overall transmission regardless of the restrictive
measures. However, also in this case there is not enough granu-
larity in the data to properly support this hypothesis.

Finally, on a more technical side, when virus transmission is
slow and occurs in several independent foci, it is possible that
infection chains self-extinguish because of demographic sto-
chasticity. Our modeling framework assumes continuous state
variables and therefore it does not account for the stochasticity
induced by discrete events. As such, our model can overestimate
infections when the case count is low.

To keep the epidemic under control, health policy makers
should continue to consider a portfolio of interventions that
include the re-tightening of confinement measures, possibly with
a stop-and-go implementation based also on seasonality effects,
or evidence on limits to the acquired immunity47, and/or the
effective isolation of infectious individuals4,10. Modeling studies
can provide reasoned estimates of the minimum target to be
attained. The proper strategy to achieve the isolation target is the
domain of public health policy. The complementary use of testing
in the control strategy is instead the domain of virology and
epidemiology. To both domains, proper modeling scenarios offer
information otherwise unavailable.
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Methods
Epidemiological model. Here, we use the model SEPIA11. The model is spatially
explicit, i.e., it accounts for the coupled dynamics of a set of n interacting com-
munities. In each community, say i (i = 1…n), the model includes the following
compartments: susceptible (Si), exposed (Ei), peak infectivity (Pi), infected with
heavy symptoms (Ii), asymptomatic/mildly symptomatic (Ai), hospitalized (Hi),
quarantined at home (Qi), recovered (Ri), and dead (Di) individuals. The dynamics
of transmission is given by:

_Si ¼ � λiðtÞSi
_Ei ¼ λiðtÞSi � δEEi

_Pi ¼ δEEi � δPPi

_Ii ¼ σδPPi � ðηþ γI þ αIÞIi
_Ai ¼ð1� σÞδPPi � γAAi

_Hi ¼ð1� ζÞηIi � ðγH þ αHÞHi

_Qi ¼ ζηIi � γQQi

_Ri ¼ γIIi þ γAAi þ γHHi þ γQQi

_Di ¼ αIIi þ αHHi:

ð1Þ

Susceptible individuals (Si) become exposed to the viral agent by contacting
individuals who are in any of the three infectious stages, namely peak infectivity,
heavily symptomatic or asymptomatic/mildly symptomatic. Frequency-dependent
contact rates are assumed, so that exposure is governed by the community-
dependent, time-varying force of infection

λiðtÞ ¼
Xn

j¼1

C S
ij ðtÞ

P
Y2 P;I;Af g

Pn
k¼1 βY;kðtÞCYkjðtÞYkP

X2 S;E;P;I;A;Rf g
Pn

k¼1 CXkjðtÞXk

;

where CXij ðtÞ (with X ∈ {S, E, P, I, A, R}) is the probability (
Pn

j¼1 CXij ðtÞ ¼ 1 for all
i’s, X’s, and t’s) that individuals in epidemiological state X who are from
community i enter into contact with individuals who are present at community j at
time t as either residents or because they are traveling there from community k
(note that i, j, and k may coincide), and βY,j(t) (Y ∈ {P, I, A}) are the stage- and
time-dependent transmission rates.

Exposed individuals (Ei) are latently infected, until they enter the peak
infectivity stage (at rate δE). This stage has been specifically introduced11 to account
for the clinical and epidemiological evidence indicating that viral shedding peaks
just before symptom onset and then declines after the emergence of symptoms or
the evolution towards an asymptomatic case12,15. Peak infectivity individuals (Pi)
progress (at rate δP) to become (with probability σ) either symptomatic individuals
with heavy clinical symptoms (Ii) or (with probability 1 − σ) asymptomatic/mildly
symptomatic individuals (Ai). Heavily symptomatic infectious individuals exit their
compartment if/when (a) they seek treatment at a health-care facility, (at rate η),
following which they may be hospitalized (a fraction 1 − ζ) or quarantined at home
(a fraction ζ; either ways, they are assumed to be effectively removed from the
general community), (b) recover from infection (at rate γI), or (c) die (at rate αI).
Asymptomatic/mildly symptomatic individuals (Ai) leave their compartment upon
recovering from infection (at rate γA). Hospitalized individuals (Hi) may either
recover from infection (at rate γH) or die (at rate αH). Quarantined (i.e., home-
isolated) individuals (Qi) leave their compartment upon recovery (at rate γQ).
People recovering from infection or dying because of COVID-19 populate the
classes of recovered (Ri) and dead (Di) individuals, respectively.

Model (1) is run at the scale of second-level administrative divisions, i.e.,
provinces and metropolitan cities (107 units as of 2020). Population size in each
spatial unit is taken from the official estimates provided yearly (last update: January
1st, 2019) by the Italian National Institute of Statistics (Istituto Nazionale di
Statistica, ISTAT; data available at http://dati.istat.it/Index.aspx?QueryId=18460).

The values of the transmission rates (βY,i(t)) are dependent on epidemiological
status (Y ∈ {P, I, A}) as in the original formulation of the model11. In addition, they
are assumed to be space- and time-dependent to take into account the effects of the
various containment measures put in place in the first months of the epidemic (see
below for further details).

Spatial coupling is parameterized by using information from the latest nation-
wide assessment of mobility fluxes, which was produced by the Italian National
Institute of Statistics (ISTAT) in 2011 (data available at https://www.istat.it/it/
archivio/139381). For each second-level administrative unit (province), say i, two
quantities are extracted from the ISTAT data, namely the fraction pi of mobile
people, i.e., the residents of i who defined themselves as commuters, and the
fraction qij of mobile people between i and all other administrative units j = 1…n
(including j = i). The contact probabilities at the beginning of the epidemic (t = 0),
CXij ð0Þ (X ∈ {S, E, P, I, A, R}) are then defined based on the quantities pi and qij.
Specifically, we assume

CXij ð0Þ ¼
ð1� piÞ þ ð1� rXÞpi þ rXpiqij if i ¼ j

rXpiqij otherwise;

(

where the parameter rX (0 ≤ rX ≤ 1) describes the fraction of contacts occurring
while individuals in epidemiological compartment X are traveling. In other

words, for community i, the social contacts of non-mobile people (a fraction
1 − pi of the community size), those of mobile people that do not occur during
travel (a fraction 1 − rX of total contacts for people in epidemiological
compartment X) and those associated with mobility for people who travel within
their community (a fraction qii of mobile people) contribute to social mixing
within the community. Conversely, the contacts occurring between two different
communities, say i and j, are a fraction rX of the total contacts of the individuals
in epidemiological compartment X, multiplied by the probability pi that people
from i travel (independently of the destination) and the probability qij that the
travel occurs between i and j. To account for the effect of the confinement
measures, we progressively reduce extra-province mobility according to the
estimates obtained through the analysis of data collected through mobile
applications25. As a conservative assumption, we elaborate near future scenarios
maintaining the same level of extra-province mobility estimated during the
lockdown, as only few commercial and production activities have resumed and
extra-regional mobility is not allowed. For the ex-post assessment instead
(Fig. 5), we exploit updated mobility data that became available after the initial
submission48.

Epidemiological data. For the calibration of the model, we consider the epide-
miological data collected by the Dipartimento della Protezione Civile (data avail-
able at https://github.com/pcm-dpc/COVID-19), which are released daily and
comprehend: at the regional level, the cumulative numbers of positive, dead and
recovered individuals, together with the actual number of positive individuals that
were hospitalized or under quarantine at home; at the province level, the cumu-
lative numbers of positive cases.

Due to the strong space-time variations in the number of tests performed, the
most trustworthy variable to monitor the outbreak is the daily number of
hospitalizations, in the following indicated with Hin. This quantity corresponds to
the flux (1 − ζ)ηI in the H compartment of our model, and grants a straightforward
link between data and model variables. However, Hin is not directly provided in the
online data, and we thus adopt a stochastic approach to derive Hin combining data
regarding the number of hospitalized individuals and deaths, and estimating
distribution of delays between hospitalization and death or discharge.

At any given day k, Hin
k is obtained by the observed variations in the daily

number of hospitalized individuals, Hk − Hk−1, plus the daily deaths
Dout
k ¼ Dk � Dk�1, and the number of individuals discharged from the hospital,

here indicated with Rout
k . Under the assumption that the recorded deaths for

COVID-19 are all from the hospitals, Rout
k is obtained by modeling as random

variables the days τ spent in a hospital before death, whose probability density
function (PDF) is indicated with pD(τ), and the time in a hospital before discharge,
whose PDF is indicated with pR(τ).

Our procedure consists of the following steps. Sampling a random value from
pD(τ) for each individual in Dout, we obtain the days of entrance of individuals that
will die, thus the sequence Din

k . We estimate the number of individuals entering on
day k that will be eventually discharged as:

Rin
k ¼ Hin

k � Din
k :

Then Rout
k is obtained by sampling an exit time from pR(τ) for each individual in

Rin
k . Finally:

Hin
k ¼ Hk � Hk�1 þ Dout

k þ Rout
k :

Reports by ISS indicate that for COVID-19 casualties the median residence time at
a hospital is about 8 days for patients that accessed ICU, and 5 days without ICU49.
We use this information to parameterize the distribution pD(τ) as a gamma
distribution of mean 7 and coefficient of variation 0.5 (hence, a median of
6.42 days; 0.05–0.95 quantiles: 2.39–13.56 days). We also assume that pR(τ) follows
a gamma distribution of mean 14 and coefficient of variation 0.5, which has a
median of 13.7 days (0.05–0.95 quantiles: 4.78–27.14 days), in agreement with the
recovery rate previously estimated11.

Final data adopted for parameter estimation of the model is the median over
100 random generations of Hin

k , downscaled to the province level and smoothed by
using a moving average of 7 days. A sensitivity analysis of Hin

k on the parameters of
the pD(τ) and pR(τ) showed that the time series considered have only marginal
variations.

Parameter estimation. The effect of the containment measures was parameterized
by assuming that the transmission parameters (βP, βI and βA) had a sharp decrease
after the containment measures announced on February 24 and March 811. We
update here such description to fully account for the set of progressively more
restrictive measures that were introduced from March 8 to March 22, when also
non-essential industrial and production activities were stopped. We describe the
temporal changes in the βP’s (the remaining transmission parameters, βI and βA,
are assumed to be proportional to βP, see Table 1) using 4 values: The value before
February 24 (βP0 ), the values achieved right after (within two days) the measures
introduced on February 24 (βP1 ) and the first set of lockdown measures imple-
mented on March 8 (βP2 ). Finally, we assume that due to the progressive imple-
mentation of the lockdown and the introduction of more restrictive measures, the
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transmission rates further linearly decreased from March 10 to March 22, even-
tually achieving the value (βP3 ), which is then held constant. We let βP3 vary among
different Italian regions to reflect possible heterogeneity in disease transmission.
Specifically, we estimate the hyperparameters controlling the prior of the para-
meters βP3=βP2 (a Gaussian distribution truncated between 0 and 1) in a hier-
archical Bayesian framework. In the ex-post assessment of our scenarios, we
introduced an additional parameter, βP4 , that quantifies the transmission after the
relaxation of the restrictive measures (i.e., after May 4). We let also βP4 to possibly
vary among the different Italian regions.

We impose an initial condition of one exposed individual in the province of
Lodi (where the first cases were reported) Δt0 days before February 24. We further
estimate also the initial condition of the exposed compartment in each province to
account for the possible seeding effect occurred during this period11.

Parameters are estimated by comparing data and simulation of the flux of
hospital admissions ((1 − ζ)ηI) at the provincial scale. We assume that each data
point follows a negative binomial distribution with mean μ, equal to the value
predicted by the model, and variance equal to ωμ (NB1 parametrization50,51).
Parameter values are summarized in Table 1.

Model (1) assumes that recovered individuals are immune and that immunity
loss is negligible within the simulation horizon considered herein (160 days). We
performed additional simulations assuming a fast waning immunity (average
duration equal to three months, as suggested by recent evidence47). Simulations up
to July 31 are almost indistinguishable from those that assume permanent
immunity (Supplementary Fig. 9).

The effect of testing and isolation. Following lockdown release, the expected
increase in the transmission rates can be compensated by isolation of cases. Clinical
and epidemiological evidence suggests that viral shedding peaks at the end of the
latent period, and that shedding rapidly declines after the symptoms’ onset or the
evolution towards an asymptomatic case15. Moreover, viral shedding is similar
regardless of the emergence of symptoms in the disease course of a patient12. This
evidence suggests that isolation should be more effective if targeted at individuals in
the exposed, E, and peak infectivity, P, compartments of the model. Therefore, we
focus on these individuals as priority targets for isolation.

When isolation is enforced, two out-fluxes, ρE,iEi and ρP,iPi, must be considered
from the exposed and peak infectivity compartments, respectively. The parameters
ρE,i and ρP,i (d−1) represent the community-dependent rate at which infected
individuals in the Ei and Pi classes are effectively isolated from the community. For
the sake of simplicity, we assume ρE = ρP = ρ. Also, individuals isolated are simply
removed from the community, without any further consideration of their clinical
trajectories, which is deemed reasonable considering the relatively short timespan
of the simulations performed here.

We estimate for each province the percentage (i.e., ρi) and the corresponding
number of individuals (ρi(Ei +Pi)) that should be isolated daily to counterbalance
the increase in transmission due to the loosening of containment measures, so as to
maintain the same level of trasmissivity achieved during the lockdown. In analogy
to the analyses presented above, we repeat the estimation of the isolation effort
under the three different assumptions about the heavy symptomatic fraction: σ =
25%, 50%, and 10%.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this manuscript are publicly available. COVID-19 epidemiological data
for Italy are available at https://github.com/pcm-dpc/COVID-19. Mobility data at
municipality scale are available at https://www.istat.it/it/archivio/139381. Population
census data are available at http://dati.istat.it/Index.aspx?QueryId=18460. Processed data
that are used in the analysis are available in the public repository https://github.com/
COVID-19-routes/geography-paper.

Code availability
The analysis of the data was performed via a custom code developed in Matlab
programming language (version R2018a) and available at the repository: https://github.
com/COVID-19-routes/geography-paper.
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