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Abstract: We present an extensive evaluation of a wide variety of promising design patterns for
automated deep-learning (AutoDL) methods, organized according to the problem categories of the
2019 AutoDL challenges, which set the task of optimizing both model accuracy and search efficiency
under tight time and computing constraints. We propose structured empirical evaluations as the
most promising avenue to obtain design principles for deep-learning systems due to the absence
of strong theoretical support. From these evaluations, we distill relevant patterns which give rise
to neural network design recommendations. In particular, we establish (a) that very wide fully
connected layers learn meaningful features faster; we illustrate (b) how the lack of pretraining in
audio processing can be compensated by architecture search; we show (c) that in text processing
deep-learning-based methods only pull ahead of traditional methods for short text lengths with
less than a thousand characters under tight resource limitations; and lastly we present (d) evidence
that in very data- and computing-constrained settings, hyperparameter tuning of more traditional
machine-learning methods outperforms deep-learning systems.

Keywords: automated machine learning; architecture design; computer vision; audio processing;
natural language processing; weakly supervised learning

1. Introduction

Deep learning [1] has demonstrated outstanding performance for many tasks such as computer
vision, audio analysis, natural language processing, or game playing [2–5], and across a wide
variety of domains such as the medical, industrial, sports, and retail sectors [6–9]. However, the
design, training, and deployment of high-performance deep-learning models requires human expert
knowledge. Automated deep learning (AutoDL) [10] aims to provide deep models with the ability
to be deployed automatically with no or significantly reduced human intervention. It achieves this
through a combination of automated architecture search [11] with automated parameterization of the
model as well as the training algorithm [12]. Its ultimate test is the use under heavy resource (i.e., time,
memory, and computing) constraints. This is, from a scientific point of view, because only an AutoDL
system that has attained a deeper semantic understanding of the task than is currently attainable can
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perform the necessary optimizations in a manner that is less brute-force and complies with the resource
constraints [13]. From a practical point of view, operating under tight resource limitations is important
as training deep architectures is already responsible for a worrying part of the world’s gross energy
consumption [14,15], and only a few players could afford operating inefficient AutoDL systems on top
of the many practical challenges involved [16,17].

Many approaches exist that automate different aspects of a deep-learning systems (see Section 2),
but there exists no general agreement upon the state of the art for fully automated deep learning.
The AutoDL 2019 challenge series [18], organized by ChaLearn, Google, and 4paradigm, has to the
best of our knowledge been the first effort to define such a state of the art [19]. AutoDL 2019 combines
several successive challenges for different data modalities, including images and video, audio, text,
and weakly supervised tabular data (see Figure 1). A particular focus is given to efficient systems
under tight resource constraints. This is enforced by an evaluation metric that does not simply reward
final model accuracy at the end of the training process, but rather the anytime performance, as measured
by the integral of the learning curve as a function of logarithmically scaled training time (see Section 3).
A good system thus must be as accurate as possible within the first seconds of training, and keep or
increase this accuracy over time. This reflects practical requirements especially in mobile and edge
computing settings [20].

The design of deep-learning models, by human experts or by an AutoDL system, would greatly
benefit from an established theoretical foundation which is capable of describing relationships
between model performance, model architecture and training data size [21]. In the absence of such
a foundation [22], empirical relationships can be established which are able to serve as a guideline.
This paradigm resulted in several recent empirical studies of network performance as a function of
various design parameters [23–25], as well as novel, high-performing and efficient deep-learning
architectures such as EfficientNet [26], RegNet [27] or DistilBERT [28].

In this paper, we systematically evaluate a wide variety of deep-learning models and strategies
for efficient architecture design within the context of the AutoDL 2019 challenges. Our contribution is
two-fold: first, we distill empirically confirmed behaviors in how different deep-learning models learn,
based on a comprehensive survey and evaluation of known approaches; second, we formulate general
design patterns out of the distilled behaviors on how to build methods with desirable characteristics
in settings comparable to the AutoDL challenges, and highlight especially promising directions for
future investigations. In particular, our most important findings are:

• Sponge effect: very large fully connected layers can learn meaningful audio and image features
faster. → Resulting design pattern: make the classifier part in the architecture considerably
larger than suggested by current best practices and fight overfitting, leading to higher anytime
performance.

• Length effect: word embeddings play out their strength only for short texts in the order of
hundreds of characters under strict time and computer source constraints. → Resulting design
pattern: for longer texts in the order of thousands of characters, use traditional machine learning
(ML) techniques such as Support Vector Machines and hybrid approaches, leading to higher
performance faster.

• Tuning effect: despite recent trends in the literature, deep-learning approaches are out-performed
by carefully tuned traditional ML methods on weakly supervised tabular data. → Resulting
design pattern: in data-constrained settings, avoid overparameterization and consider traditional
ML algorithms and extensive hyperparameter search.

• Pretraining-effect: leveraging pretrained models is the single most effective practice in confronting
computing resources constraints for AutoDL. → Resulting design pattern: prefer fine-tuning
of pretrained models over architecture search where pretrained models on large datasets
are available.
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EN: building slowly and subtly , the film , sporting a breezy spontaneity and realistically drawn characterizations , develops
into a significant character study that is both moving and wise.

ZH: 来到沈阳，国奥队依然没有摆脱雨水的困扰。7月31日下午6点，国奥队的日常训练再度受到大雨的干扰，无奈之下队员们只慢跑了25分钟就草草收场。31日上午10点，国奥队在奥体中心外场训练
的时候，天就是阴沉沉的，气象预报显示当天下午沈阳就有大雨，但幸好队伍上午的训练并没有受到任何干扰。下午6点，当球队抵达训练场时，大雨已经下了几个小时，而且丝毫没有停下来的意思。抱
着试一试的态度，球队开始了当天下午的例行训练，25分钟过去了，天气没有任何转好的迹象，为了保护球员们，国奥队决定中止当天的训练，全队立即返回酒店。在雨中训练对足球队来说并不是什么
稀罕事，但在奥运会即将开始之前，全队变得“娇贵”了。在沈阳最后一周的训练，国奥队首先要保证现有的球员不再出现意外的伤病情况以免影响正式比赛，因此这一阶段控制训练受伤、控制感冒等疾
病的出现被队伍放在了相当重要的位置。而抵达沈阳之后，中后卫冯萧霆就一直没有训练，冯萧霆是7月27日在长春患上了感冒，因此也没有参加29日跟塞尔维亚的热身赛。队伍介绍说，冯萧霆并没有出
现发烧症状，但为了安全起见，这两天还是让他静养休息，等感冒彻底好了之后再恢复训练。由于有了冯萧霆这个例子，因此国奥队对雨中训练就显得特别谨慎，主要是担心球员们受凉而引发感冒，造
成非战斗减员。而女足队员马晓旭在热身赛中受伤导致无缘奥运的前科，也让在沈阳的国奥队现在格外警惕，“训练中不断嘱咐队员们要注意动作，我们可不能再出这样的事情了。”一位工作人员表示。
从长春到沈阳，雨水一路伴随着国奥队，“也邪了，我们走到哪儿雨就下到哪儿，在长春几次训练都被大雨给搅和了，没想到来沈阳又碰到这种事情。”一位国奥球员也对雨水的“青睐”有些不解。

c_1 c_2 c_3 c_4 c_5 c_6 c_7 c_8 c_9 . . . c_15 n_1 n_2 n_3 n_4 n_5 n_6 . . . n_53 t_1 Label
0 1 12 13 14 0 1 3 4 . . . 7 160.73 45.26 38.5 2.5 655 70 . . . 1 1494349988706 1
1 2 34 43 11 0 1 - - . . . 2 132.37 66.74 1 2.5 706 82 . . . 1 1494349996593 -
1 3 21 23 3 1 1 - - . . . 2 176.24 46.08 41.5 2.5 2350 15914.5 . . . 1 1494349996669 -
0 1 23 12 3 1 1 7 13 . . . 6 176.89 48.81 175 2.5 353.5 2842 . . . 1 1494349998601 -1
0 0 7 34 3 1 1 - - . . . 1 175.46 60.92 32.5 2.5 35.5 1 . . . 1 1494350002745 1

Figure 1. Samples from the AutoDL 2019 training/development datasets show the variety of tasks
covered. First row: image data from photographs, medical imaging, CCTV, and aerial imaging with
resolutions from 100× 100 to 1073× 540 pixels. Second row: video data is confined to short action
sequences; here, an overview of the action types is depicted first, followed by four frames of the action
“running”. Third row: waveforms and corresponding spectrograms are given for an English speech
sample (speaker recognition task) and a rock music snippet (genre recognition) as audio task examples.
Row four and five: a shorter English movie review and a longer Chinese news article. Last row:
a sample of weakly supervised tabular data including categorical (c), numerical (n) and timestamp (t)
columns as well as missing data and labels (-); neither the meaning of the features nor of the classes is
disclosed to the developers.

The overall target of these design patterns is high predictive performance, fast training speed and
high out-of-the-box generalization performance for unseen data. The remainder of this work is organized
as follows: Section 2 surveys the most important related work. Section 3 introduces the general goals
and performance metrics used, before we follow the structure of the sub-challenges of the AutoDL
2019 competition and derive design patterns and directions per modality in Sections 4–7, based on
a thorough evaluation of a broad range of approaches. Section 8 then consolidates our findings from
the individual modalities and discusses overarching issues concerning all aspects of architecture design
for AutoDL. Finally, in Section 9, we offer conclusions on the presented design choices for AutoDL,
highlighting major open issues.
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2. Survey of Related Work

Automated machine learning (AutoML) and by extension AutoDL is usually defined as the
combined algorithm selection and hyperparameter optimization (CASH) problem [29], which encompasses
choice and parameterization of both a machine-learning model and a respective training algorithm—all
without any human input. In the following, we give an overview of those AutoDL aspects with highest
relevancy to this work.

2.1. Hyperparameter Optimization

The performance of machine-learning and especially deep-learning methods crucially depend
well-chosen hyperparameters. The task of optimizing these manually is often laborious or even
impossible. Hyperparameter optimization (HPO) [12] research tackles this sub-task of AutoML.
Among its most important challenges are (a) the computational expensiveness of evaluating many sets
of hyperparameter combinations on a given deep-learning architecture, (b) the high dimensionality
and complexity of the search space (including co-dependencies among different hyperparameters),
and (c) the lack of information on the shape of the loss surface as well as its gradients with respect to
the hyperparameters. Therefore, the HPO problem is typically tackled using general purpose black
box optimization techniques:

Common model free black box optimization methods are grid search [30] and random search [31].
In grid search, a range of viable values are chosen per hyperparameter and the model is evaluated for
the Cartesian product over all the choices made. Due to scaling exponentially with respect to search
space dimensionality and polynomially with respect to grid resolution, an exhaustive grid search
is often prohibitively computationally costly. Alternatively, in random search, randomly sampled
configurations of hyperparameters are evaluated until a certain budget of computational resources
is exhausted. It can also be used in conjunction with local search [32]. Genetic or evolutionary
algorithms [33] operate on an evolving population of candidate solutions. Both can be parallelized in a
straightforward way [34], and have been applied successfully in deep learning [35].

Bayesian optimization [36] is a powerful framework for optimizing expensive black box functions.
The main idea is to model the response surface of the black box using a probabilistic surrogate
model described as Gaussian processes [37] or estimated by random forests [38] and the Tree Parzen
Estimator [39]. The second core component is the acquisition function, which uses the surface
prediction of the surrogate model to decide where to sample the next point of the black box, therefore
balancing exploration versus exploitation. The concept of using the true loss in combination with early
stopping as a surrogate loss can be taken even further by combining early stopping with learning curve
predictions, leading to predictive termination [40]. The fact that there is currently no large difference
in performance between random search and more sophisticated methods testifies to the difficulty of
the HPO problem [41].

2.2. Neural Architecture Search

Neural architecture search (NAS), which is concerned with automatically finding high-performing
neural network architectures, can be categorized along three dimensions [11]:

The search space encompasses all possible model architectures that can be theoretically found
using a specific NAS method. However, a search space constrained by prior knowledge might lead
to the NAS system not finding an optimal architecture that looks very different from human crafted
architectures. A common search space definition is an arbitrary length chain of known operations such
as convolution, pooling, or fully connected layers, together with their respective hyperparameters
(number of filters, kernel size, activation function etc.) [42]. Limiting the search space to the design
of a characteristic block or cell that is then stacked, e.g., the inception module [43], leads to a much
reduced search space and thus accelerated search [44].
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Common search strategies build on HPO methods and include random search as a strong
baseline [45], as well as Bayesian optimization, gradient-based methods, evolutionary strategies,
or reinforcement learning (RL). The literature is inconclusive whether the latter two consistently
outperform random search [46].

Performance estimation of an architecture under consideration using the standard method of
employing training and validation datasets usually leads to a huge, often prohibitive, demand for
computational resources. Therefore, NAS often relies on cheaper but less accurate surrogate metrics
such as validation of models trained with early stopping [10], on lower-resolution input [47], or with
fewer filters [46]. In the context of AutoML, NAS can be employed in two ways: offline, in conjunction
with a performance measure that emphasizes generalizability to a new task, or online, to directly find
an architecture that is tuned to the task at hand.

2.3. Meta-Learning

Meta-learning [48] comprises methods to gather and analyze relevant data on how machine-learning
methods performed in the past (meta-data) to inform the future design and parameterization of
machine-learning algorithms (“learning how to learn”). A rich source of such meta-data are the metrics
of past training runs, such as learning curves or time until training completion [49]. By statistically
analyzing a meta-data database of sufficient size it is possible to create a sensitivity analysis that shows
which hyperparameters have a high influence on performance [50]. This information can be leveraged to
significantly improve HPO by restricting the search space to parameters of high importance.

A second important source of meta-data are task-specific summary statistics called meta-features,
designed to characterize task datasets [51]. Examples for such statistics are the number of instances
in a dataset or a class distribution estimate. There are many other commonly used meta-features
mostly based on statistics or information theory. An extended overview is available in Vanschoren [48].
A more sophisticated approach is to learn, rather than manually define, meta-features [52,53].

As there is no free lunch [54], it is important to make sure that the meta-data used originates from
use cases that carry at least some resemblance to the target task. The closer the use cases from which
the meta-data is constructed, and the target task are in distribution, the more effective meta-learning
becomes. When the similarity is strong enough (e.g., different computer vision tasks on real world
photos), it is helpful to not only inform the algorithm choice and parameterization by meta-learning
but also the model weights by using transfer learning [55].

Instead of initializing the model weights from scratch, transfer learning [55] suggests re-using
weights from a model that has been trained for a general task on one or multiple large datasets. In a
second step, the weights are only fine-tuned on the data for the task at hand. The use of such pretrained
models [56] has been applied extensively and successfully e.g., for vision [57] and natural language
processing tasks [58], although the opposite effect, longer training and lower prediction quality, is also
possible if tasks or datasets are not compatible [59]. Transfer learning can be taken even further by
training models with a modified loss that increases transferability, such as MAML [60].

2.4. Empirical Guidelines for Designing Neural Networks

In the light of the aforementioned difficulties to ground design choices in the absence of an
overarching theory [61], there has been a trend of using vast empirical studies to distill guidelines on
designing neural networks. Several such studies recently established relationships between model
performance and various design parameters. The effect of data size on the generalization error in
vision, text, and speech tasks was studied and a strikingly consistent power-law behavior was observed
in a large set of experiments [23], extended by a recent study of the dependence of the generalization
error on both data size and model size for a variety of datasets [24]. In a recent survey, the effect of
model size, data size and training time on performance was systematically studied in the context of
language models, yielding several empirical scaling laws [25].
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EfficientNet [26] is a good example of translating such observations into novel deep-learning
model architectures that are at the same time high-performing and resource efficient. Here, it was
observed that scaling width, depth, and input resolution has combined positive effects larger than
scaling each factor in isolation. More recently, a study aimed at finding neural network design
spaces with a high density of good models (RegNet) [27]. This study revealed that having roughly 20
convolutional blocks is a good number across many different network scales (mobile settings up to
big networks). The most successful network architectures in the given search space also effectively
ignored bottleneck, reverse bottleneck, as well as depth-wise convolutions, which is surprising since
all these paradigms are very prevalent in contemporary neural network design best practices.

3. Study Design

In the remainder of this paper, the findings of our systematic evaluation of AutoDL strategies are
presented, structured according to the following data modalities: visual, audio, text, and tabular data,
based on the sub-challenges of the AutoDL competition. Each modality is presented in a distinct section,
each following the same structure (see Figure 2). Each section discusses the search for a suitable model,
its evaluation and interim conclusions for a given data modality. The work is reproducible by using
our code which has been published on GitHub [62], it is conveniently usable in conjunction with the
starting kit provided by the challenge organizers [63].

Figure 2. Study design: we organize the main sections according to data modality, using a unified
structure with a few task-specific sub-sections. Only modality-specific findings are presented directly.

The quantitative metrics for this study are motivated by the goal of deriving general design
patterns for automated deep-learning methods specifically for heavily resource-constrained settings.
This study is conducted within the environment of the AutoDL 2019 competition. In accordance
with the competition rules, developed models are evaluated with respect to two quantitative metrics:
final predictive performance as well as sample and resource efficiency [19]. Final model accuracy
thereby is captured by the Normalized Area Under the ROC Curve (NAUC). In the binary classification
setting, this corresponds to 2× AUC − 1 where AUC is the well-known Area Under the Receiver
Operating Characteristic curve. In the multi-class case the AUC is computed per class and averaged.
Resource efficiency is measured by the Area Under the Learning Curve (ALC), which takes training
speed and hence training sample efficiency into account. Another term for this used throughout this
paper is anytime performance.

Learning curves, as depicted in Figure 3, plot the predictive performance in terms of NAUC versus
logarithmically transformed and normalized time t̃ which is defined in the AutoDL 2019 competition
as follows [19]:

t̃ =
log(1 + t/t0)

log(1 + T/t0)
(1)

Here, T is the available time budget, t is the elapsed time in seconds and t0 is a constant used for
scaling and normalization. Time and performance are both normalized to 1 and the area under the
learning curve (ALC), computed using the trapezoidal rule, is a normalized measure between 0 and 1.
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Figure 3 illustrates the workings of NAUC and ALC by means of two models and their performance.
The first model shows higher predictive performance at the end; however, it trains significantly slower
and therefore demonstrates lower anytime performance. The logarithmic scaling of the time axis
emphasizes the early training stages for the computation of ALC.

Figure 3. The performance trajectory of two example models during training to explain the used
metrics. The model with faster training (right) scores better, in terms of ALC, than the model with
higher final accuracy but slower training (left).

4. Methods for Visual Data

Our evaluation of AutoDL strategies for visual data in this section is performed in the context of
the AutoCV2 sub-challenge of the 2019 AutoDL challenges, which fully contains AutoCV1.

4.1. Background

The goal of the AutoCV2 sub-challenge is the development of a system that is able to perform
multi-label and multi-class classification of images and videos of any type without human intervention.
Seven datasets are available for offline model development and training (for details see Table 1).
Developed models can then be validated on five unknown datasets (two containing images,
three containing videos). The final evaluation is performed on five private datasets.

Based on the results of our evaluation we establish specific patterns for designing successful
vision systems with respect to the metrics defined in Section 3. As a baseline model we adopt
MobileNetV2 [64], inspired by the runner-up of AutoCV1 [65]. Initial tests showed that pretraining
on ImageNet [66] is absolutely necessary, therefore all subsequent experiments are conducted using
pretrained models.

Table 1. Vision: Summary of vision datasets.

Dataset Content Modality Size No. Training Samples No. Classes

Chucky Everyday Objects Images 32× 32× 1 48,061 100
Decal Satellite Images Images Varying 634 11
Hammer Medical Images Images 400× 300× 3 8050 7
Pedro Pedestrian Images Images Varying 80,095 26
Katze Common Actions Videos 120× 160× 3 1528 6
Kraut Common Actions Videos 120× 160× 3 1528 4
Kreatur Common Actions Videos 60× 80× 3 1528 6
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4.2. Base Architecture Selection

The basic neural network architecture is a crucial choice for any deep-learning system. This is
especially true for automated deep learning where next to predictive performance, flexibility is
very important. The recently introduced EfficientNets [26] are a strong candidate architecture
(see Section 2.4) as they combine top performance with lean design. The most appealing feature
of the EfficientNet in the context of AutoDL is that the architecture incorporates two natural scaling
parameters, which can be used to scale the base network up (wider and deeper) or down (shallower and
narrower). To test our hypothesis that EfficientNet is a solid choice in an AutoDL setting, we benchmark
the smallest configuration used in the original publication, EfficientNet-B0 (scaling: 1, 1), as well as an
even smaller version we call EfficientNet-mini (scaling: 0.8, 0.8), against our baseline of MobileNetV2
(using otherwise similar hyperparameters). On top of each model, a classifier consisting of two fully
connected layers of size 512 and no regularization is used.

The benchmark results in Table 2 show that EfficientNet-B0 has high predictive performance as
indicated by the NAUC score. In terms of ALC, the much smaller and faster MobileNetV2 scores
highest for each dataset. EfficientNet-mini is not a worthwhile compromise, since it is only marginally
faster than EfficientNet-B0 while having a considerably worse predictive performance. These results
lead to the verdict that in a time-sensitive setting MobileNetV2 is preferred, while under less tight time
constraints or for more complicated vision tasks EfficientNet-B0 definitely is a good choice. For strong
anytime performance, it is recommended to use a combination of both architectures and select the more
appropriate model based on the availability of data and complexity of the image classification task.

Table 2. Vision: Numerical evaluation of different network architectures on the image and video
training datasets.

Datatype Image Video
Dataset Chucky Decal Hammer Pedro Katze Kraut Kreatur

MobileNetV2 Return Time (s) 15.86 20.35 26.42 25.53 21.54 21.29 16.24
ALC 0.7536 0.7759 0.7562 0.7491 0.8508 0.6551 0.8678
NAUC 0.6853 0.8568 0.8538 0.8712 0.9487 0.7433 0.9521
Overfit? Yes Minor No No No No No

EfficientNet-mini Return Time (s) 75.65 76.53 85.51 83.48 83.28 82.77 80.61
ALC 0.5642 0.5804 0.5896 0.5938 0.6559 0.4952 0.6543
NAUC 0.779 0.7852 0.8371 0.9043 0.9321 0.6992 0.9258
Overfit? Yes Minor No No No No No

EfficientNet B0 Return Time (s) 78.87 77.85 88.02 85.57 84.27 85.77 84.2
ALC 0.5880 0.5831 0.6165 0.6101 0.6542 0.4906 0.6584
NAUC 0.8233 0.7657 0.90 0.9231 0.9548 0.6905 0.9489
Overfit? Yes Yes No No No No No

4.3. Classifier Design

Apart from the base architecture, the size and design of the fully connected classifier layers are
the most important design choices when building a Convolutional Neural Network (CNN). The first
question that needs to be answered is how the extracted features are fed into the classifier. Two common
options are to reshape the output to have dimension one in height and width (flatten), or to compute
the average over height and width (spatial pooling). For videos, there is the additional time dimension
which can be pooled (temporal pooling). Experiments on all datasets (see Table 3) conclusively show
that spatial pooling is the best option.

The second important characteristic is the number of layers and number of neurons per layer of
the fully connected classifier. We tested different one- and two-layer classifiers from 64 neurons in a
single layer up to two times 1024 neurons in two layers. Figure 4 shows a very interesting phenomenon:
big classifiers are able to absorb information faster and therefore learn much quicker during the first
couple of iterations. We dubbed this the sponge effect, as the fast information intake resembles a sponge
being immersed in water. The sponge effect can be exploited whenever a network design needs to be
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adapted for fast training speeds. As we observe that this phenomenon is not only relevant to vision,
we will present a more detailed, multi-modal, investigation in Section 5.6.

Table 3. Vision: Comparison of different pooling methods for image and video classification, using the
MobileNetv2 architecture.

Datatype Image Video
Dataset Chucky Decal Hammer Pedro Katze Kraut Kreatur
Measure ALC NAUC ALC NAUC ALC NAUC ALC NAUC ALC NAUC ALC NAUC ALC NAUC

Flatten 0.6922 0.5894 0.7105 0.8078 0.6992 0.7752 0.7371 0.8642 0.8311 0.9347 0.6053 0.7179 0.8297 0.9111
Spat. pooling 0.7511 0.6737 0.7791 0.8637 0.7478 0.8358 0.7483 0.8951 0.8512 0.9540 0.6646 0.6924 0.8650 0.9418
Tmp. pooling − − − − − − − − 0.8290 0.9192 0.6246 0.6870 0.7531 0.8910
Spat. & tmp. − − − − − − − − 0.8445 0.9359 0.6305 0.6430 0.8447 0.9346

Figure 4. Vision: Learning curves as function of training time for MobileNetV2 with varying layout
of the fully connected classifier layer(s): 1 layer with 64 neurons (1× 64, red), 2× 64 (blue), 1× 1024
(yellow) and 2× 1024 (green), shown for image datasets Chucky (left) and Pedro (right).

4.4. Globally Suitable Hyperparameter Settings

Even a well-designed network architecture can completely fail when the wrong hyperparameters
are chosen. Section 2 introduced existing methods for finding suitable hyperparameters, but these
methods are too slow to be used in an online fashion when optimizing for an anytime-performance
metric such as ALC. Hence, online HPO is not possible and it is mandatory to find good default
values that generalize well to as many scenarios as possible. This is achieved by studying different
hyperparameter choices on the offline training datasets.

Figure 5 shows the results of a grid search for weight decay and learning rate of the AdamW
optimizer [67]. In the case of learning rate, it shows very clearly that a value of 0.001 performs well
for every dataset. For weight decay, the agreement among the datasets is much lower and the result
is therefore harder to interpret. When the performance is averaged over all datasets, we obtain a
maximum performance point for weight decay that is not strictly optimal for any of the datasets,
but performs well on all of them.
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Figure 5. Vision: Performance in terms of ALC of MobileNetV2 as a function of weight decay and
learning rate, shown for the four image datasets (top row) as well as averaged over all datasets
(bottom row). The best performance is indicated by the green dot.

4.5. Integrating the Time Dimension of Videos

Video data differs from image data by having an additional dimension: time. There exist different
approaches for processing this additional dimension, from 3D CNNs [68] that naturally incorporate a
third dimension, to temporal pooling which simply averages over time. 3D convolutions have a very
heavy memory and computing consumption. The lightweight 2+1-dimensional (2+1D) architecture for
action recognition in videos, proposed in Ref. [69], is based on a modified ResNet-18 architecture [70],
where after each residual block a one-dimensional convolution in the temporal direction is inserted.
This allows the network to learn temporal and spatial structures independently with a very light model,
at the disadvantage of not being able to learn interactions between the temporal and spatial information.

Table 4 shows that the 2+1D model exhibits poor performance in terms of ALC. To speed the
model up, we made it even more lightweight by removing all but the last two temporal convolutions
(2+1D small), which yields a significant performance boost. The last architecture we evaluate is based
on the MobileNetV2 baseline. We use a single three-dimensional convolution in place of temporal
pooling (Late 3D). This approach yields by far the best results.

Table 4. Vision: ALC performance of the evaluated video classification models for the various
video datasets.

Model 2+1D 2+1D Small Late 3D

Kreatur 0.31 0.44 0.85
Katze 0.10 0.23 0.80
Kraut − 0.39 0.61

4.6. Interim Conclusions

Our evaluations yield observations that may help optimizing a vision system for AutoDL in
an anytime-performance-oriented setting. Making models smaller makes them faster and therefore
suited for fast learning. We could show that for certain hyperparameters (e.g., learning rate, pooling),
a relatively simple evaluation can conclusively reveal the best choice for a resource-constrained setting.
We also established that having a large classifier increases training speed through better sample
efficiency. This rather counter-intuitive sponge effect can lead to bigger models training faster than
smaller ones and is further discussed in Section 5.6.
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5. Methods for Audio Data

This section describes the unique challenges and opportunities in automated audio processing in
the context of the AutoSpeech challenge of AutoDL 2019 and presents empirical results. The model
search space covers preprocessing, model development, architecture search, and building ensembles.
We compare the proposed architectures, present principles for model design and give research
directions for future work.

5.1. Background

Although training an ensemble of classifiers for automated computer vision is not possible in a
resource-constrained environment, this limitation does not exist for audio data due to the much smaller
dataset and model sizes. Lightweight architectures pretrained and optimized on ImageNet [2] are
common choices for computer vision tasks. However, in the case of audio classification, such pretrained
and optimized architectures are not yet abundant, though starting points exist: AudioSet [71], a dataset
of over 5000 h of audio with 537 classes, as well as the VoxCeleb speaker recognition datasets [72,73],
aim at providing an equivalent of ImageNet for audio and speech processing. Researchers trained
computer vision models, such as VGG16, ResNet-34 and ResNet-50, on these large audio datasets
to develop generic models for audio processing [73,74]. However, architecture search and established
bases for transfer learning for audio processing remain an open research topic.

The AutoSpeech challenge spans a wide range of speech and music classification tasks (for details
see Table 5). The small size of the development datasets provides the chance of developing ensembles
even under tight time and computing constraints; nonetheless poses the challenge of overfitting and
the general problem of finding good hyperparameter settings for preprocessing. The five development
datasets from AutoSpeech are used to optimize and evaluate the proposed models for automated
speech processing. The audio sampling rate for all datasets is 16 KHz, and all the tasks are about
multi-class classification. The available computing resources are one NVIDIA Tesla P100 GPU, a 4-core
CPU, 26 GB of RAM, and the time is limited to 30 min.

Table 5. Audio: Summary of audio datasets.

Avg. Max. Min.
Dataset Classes Length (s) Length (s) Length (s) Samples

Speaker 100 8.35 73.16 3.96 3000
Emotion 7 2.75 6.78 1.22 428
Accent 3 26.31 91.32 16.46 976
Genre 20 5.00 5.00 5.00 939
Language 10 8.08 16.39 2.07 199

5.2. Preprocessing

Both raw audio, in the form of time series data, and preprocessed audio converted to
a 2D time-frequency representation, provide the necessary information for pattern recognition.
The standard for preprocessing and feature extraction in the case of speech data is to compute the
Mel-spectrogram [75] and then derive the Mel-Frequency Cepstral Coefficients (MFCCs) [76]. The main
challenge of this preprocessing is the high number of related hyperparameters. Table 6 presents three
candidate sets of hyperparameters for automated audio processing: the default hyperparameters of
the LibROSA Python library [77], hyperparameters from the first attempt on using deep learning for
speaker clustering [78], and our empirically optimized hyperparameters derived for the AutoSpeech
datasets There is no single choice of hyperparameters which outperforms the others for all datasets.
Therefore, optimizing the preprocessing for specific tasks or datasets based on trainable preprocessing is
a potential subject for future research.
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Table 6. Audio: List of parameters used to compute Mel-spectrograms and MFCCs.

LibROSA Speaker Empirically
Parameter Default [77] Clust. [78] Optimal

Audio segment length (s) 6.25 0.5 or 3 3
Down sampling rate 1 2 1
Proc. sampling rate (kHz) 16 8 16
Frame length 2048 256 2048
Hop length 512 128 512
FFT length (samples) 2048 512 2048
Number of Mel bins 40 or 128 128 128
Number of Mel features 40 24 24
Lower/upper edge freq. (Hz) 10/8000 50/4000 1/8000

5.3. Modeling

One-dimensional CNNs and Recurrent Neural Networks (RNNs) such as Long Short-Term
Memory (LSTM) cells [79] or Gated Recurrent Units (GRUs) [80,81] are the prime candidates
for processing raw audio signals as time series. Two-dimensional RNNs and CNNs can process
preprocessed audio in the form of Mel-spectrograms and MFCCs.

Table 7 presents a performance comparison for three architectures. The first model uses MFCC
features and applies GRUs to them for classification. The second model is a four-layer CNN with
global max-pooling and a fully connected layer on top. This model is the result of a grid search on
kernel size, number of filters, and size of the fully connected layers. The third model is an 11-layer
CNN for audio embedding extraction called VGGish [74], pretrained on an audio dataset that is part
of the Youtube-8m dataset [82]. Here, it is worth mentioning that training on raw audio using LSTMs
or GRUs requires more time, which is at odds with our goal to train the best model under limited time
and computing resources. The results presented in Table 7 support the idea that the model produced by
architecture search performs better than the other models in terms of accuracy and sample efficiency. The
simple CNN model outperforms the rest in terms of NAUC and ALC, except for accent classification,
while VGGish profits from pretraining on additional data in language classification.

Table 7. Audio: Performance of various architectures on the training datasets.

Speaker Emotion Accent Music Language
Model Metric Identification Recognition Detection Genre Classification

MFCCs + GRUs ALC 0.5514 0.7693 0.5673 0.4820 0.9372
NBAC 0.9300 0.8528 0.8060 0.5593 0.9987

CNNs + Global pooling ALC 0.8076 0.8313 0.3993 0.6396 0.9405
NBAC 0.9564 0.8639 0.4444 0.6524 0.9965

VGGish [74] ALC 0.5444 0.7891 0.5254 0.5762 0.9440
NBAC 0.9036 0.8424 0.5903 0.6230 0.9966

The models in Table 7 have enough capacity to memorize the entire development datasets for all
tasks. Therefore, the pressing issue here is preventing overfitting and optimizing the generalizability
of the models to unseen data. Reducing overfitting in small data settings is easier with the smaller
CNN model compared to a larger model such as VGGish. Another way to tackle this issue is to
develop augmentation strategies. SpecAugment [83] represents one of the first approaches towards
augmentation for audio data. The principle of manual augmentation design can be extended to
automated augmentation policy search. Investigating possible audio augmentation policies manually
or automatically, similar to AutoAugment [84] for image processing, is a promising direction for
future studies.

5.4. Ensembles

Given the provided computing resources, size of datasets and model complexity, it is possible
to train an ensemble of classifiers. Such models can be trained either in parallel or sequentially.
The sequential approach trains the models one after another and the final prediction is computed



AI 2020, 1 522

by averaging the probability estimates of all models. The parallel approach trains a set of models
simultaneously and combines the predictions through trainable output weights. Sequential training
shows better performance at the beginning of the training by concentrating on smaller models and
training them first, optimizing anytime performance. On the other hand, the parallel approach
divides the computing resources among all models and optimizes the combination of the predictions:
by optimizing the weights of the ensemble members via gradient descent, it naturally focuses on
pushing smaller models with earlier predictive performance at the beginning of the training process,
and shifts that focus towards the more complex hence better final performing models towards the
end. Table 8 presents the results obtained using both types of ensembles. Both approaches show merit
although no approach is superior on all datasets.

Table 8. Audio: Performance of a sequential and a parallel ensemble on the training datasets.

Speaker Emotion Accent Music Language
Ensemble Type Metric Identification Recognition Detection Genre Classification

Sequential ALC 0.7849 0.8645 0.4514 0.6433 0.9469
NAUC 0.9408 0.8813 0.5861 0.6737 0.9979

Parallel ALC 0.7025 0.8105 0.6051 0.6285 0.8936
NAUC 0.9700 0.9054 0.7685 0.7199 1.0000

5.5. Interim Conclusions

Finding the optimal preprocessing for audio classification is challenging due to the large number
of hyperparameters. There is not a single set of hyperparameters which outperforms all others for all
audio classification tasks. Therefore, a trainable preprocessing unit to adjust the hyperparameters to
a given dataset is an exciting possibility for future research. Our experimental results demonstrate
that architecture search is the most fruitful direction in model design to achieve optimal performance
for small datasets. Furthermore, there is an opportunity to develop more lightweight pretrained
architectures specifically for audio processing using the AudioSet and VoxCeleb datasets, similar to
what is available to the computer vision community with ImageNet-pretrained models. The results
confirm that building an ensemble of models is an efficient way to improve the final performance in
the studied setting. Nevertheless, most of the applied methods suffer from overfitting. Establishing
best practices for automated augmentation thus represents a final promising line of future studies.

5.6. The Sponge Effect in Vision and Audio Processing

As discussed in Section 4, Figure 4 reveals the interesting phenomenon we dubbed sponge effect
that large fully connected classifiers initially learn much faster than small ones. In this section, we study
this effect more closely for the modalities of vision and audio. We do this by fitting our models with
different classifiers—small to large, one, and two layers—on all datasets available for both modalities.
Since the datasets and models are much smaller for audio than for vision, we use 16, 32, 64 and
128 neurons per layer for audio and 64, 256, 512 and 1024 neurons per layer for vision, respectively.

We test for the sponge effect by investigating the performance for the two first evaluations of each
model, occurring after 10 and 35 minibatches of size 25 for vision, and after 5 and 11 training epochs
for audio. We average the performance over the first two evaluations, as well as over all available
datasets. The results are presented in Figure 6, using MobileNetV2 for vision and the average of the
4-layer CNN and VGGish for audio. It clearly shows that the sponge effect is present in the vision and
audio models.

Even though the sponge effect is very apparent in the first training stage, the classifier size correlates
much less with the final performance of a model. This observation demonstrates that increasing the
classifier predictability (size) is not a free win, but there is a trade-off between training speed and
proneness of a model to overfitting. Hence, the combination of large classifiers with sample-efficient
regularization techniques, such as fast AutoAugment [85] or early stopping, is a promising step forward.
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Figure 6. Sponge effect in vision and audio: Evidence for the increased sample efficiency of larger fully
connected classifiers (“sponge effect”), shown by the averaged performance of eight different classifier
designs on Vision and Audio data.

6. Methods for Textual Data

In this section, we report on our findings with respect to natural language processing tasks as
evaluated in the AutoNLP sub-challenge of AutoDL 2019.

6.1. Background

The natural language processing (NLP) challenge is about classifying text samples in a multi-class
setting for a variety of datasets. We evaluate standard machine learning versus a selection of
deep-learning approaches: the successful deep word embeddings [86], a standard approach for text
classification, Term-Frequency-Inverse-Document-Frequency (TF-IDF, [87]), for feature extraction and
weighting (vectorization) and Support Vector Machines (SVM) [88] with linear kernels as classifiers.
This can compete in many cases with the state of the art [89], especially for small datasets. Additionally,
it is difficult to develop features as good as TF-IDF, which has a global view of the data, when processing
a few samples sequentially.

Deep-learning methods can be developed on patterns mined from large corpora by using methods
such as said word embeddings [86] as well as Transformers, e.g., BERT [58], achieving highest
prediction quality in text classification tasks. A key aspect to consider when choosing a method
to use—as we will see later—is the characteristics of the dataset, implying the length effect.

The data for AutoNLP encompasses 16 datasets with texts in English (EN) and Chinese (ZH).
We concentrate on the evaluation on the 6 offline datasets that involve a broad spectrum of classification
subject domains (see Table 9). The distribution of samples per class is mostly balanced. Dataset O3
is a notable exception, showing severe class imbalance of 1 negative example for roughly every
500 positive ones. The English datasets have about 3 Million tokens from which 243,515 are unique
words (a relatively large vocabulary). The Chinese datasets have 52,879,963 characters with 6641 of
them being unique (A comparison is difficult since “这是鸟” means “this is a bird” whereas “工业
化” means “industrialization” (from [90])). Since the ALC metric is also used in this competition,
producing fast predictions is imperative. Preprocessing is a key component to optimize, especially
since some texts are quite long.
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Table 9. Text: Characteristics of the used textual datasets; ACI refers to the average number of characters
per instance.

Name Language Domain # Train # Test ACI # Classes

DEMO ZH Hotel Reviews 6k 4k 109.60 2
O1 EN Movie Reviews 7k 2k 104.80 2
O2 EN News Groups 11k 7k 1849.72 20
O3 EN Enron Mails 60k 50k 2153.53 2
O4 ZH Short News 55k 10k 919.614 10
O5 ZH Product Teasers 156k 72k 20.59 18

6.2. Preprocessing

The first step is to select a tokenizer for the specific languages. After tokenization, the texts are
vectorized, meaning words are converted to indices and their occurrences counted. We increased the
number of extracted features over time, as we will describe later.

Language dependency: The preprocessing is language dependent, specifically using a different
tokenizer, and in part removing stop words in English. The chosen tokenizer for English is a
regex-based word tokenizer [91], whereas for Chinese a white-space aware character-wise tokenizer
(char_wb) or the Jieba tokenizer is chosen [92].

Vectorization: A traditional word count vectorizer needs to build up and maintain an internal
dictionary for checking word identities and mapping them to indices. We instead apply the hashing
trick [93] which has several advantages. It removes the need for an internal dictionary by instead
applying a hash function to every input token to determine its index. It can therefore be applied in an
online fashion without precomputing the whole vocabulary and is trivially parallelizable, which is
crucial in a time-constrained setting. We weight the Hashing Vectorizer counts (term frequency) with
inverse document frequency (TF-IDF).

N-gram features: Simple unigram feature extraction is the fastest method, but cannot grasp the
dependency between words. We therefore increase the width of n-grams, i.e., the number of neighboring
tokens we group together for counting, in each iteration and change the tokenization from words to
characters and back depending on the number of n-grams. Using multiple word and character n-grams
proved to be successful [89] in other NLP competitions. Naively using n-grams, without applying
lemmatization or handling synonyms, might produce lower prediction quality, but these more advanced
methods need much more time to preprocess than is available in the resource-constrained settings.

Online TF-IDF: IDF weights are usually computed over the whole training corpus. We apply a
modified version that can be trained on partial data and is updated incrementally.

Word embeddings: For each language fastText embeddings [94] were available in the competition,
i.e., for each word a dense representation in a 300-dimensional space is provided. Even though these
embeddings were developed for deep learning they can also be used as features for a SVM by summing
the individual embeddings of each word per sample (e.g., sentence) [95].

6.3. Classifiers

In the following section we present our baseline and improved classifiers as well as the three best
ranked approaches from the competition (The three highest-ranked participants were requested to
publish their code after the competition):

CNN: We used a simple 2 layer stacked CNN as a baseline for deep-learning methods. Each layer
of the CNN has a convolutional layer, max-pooling, dropout (0.25) and 64 filters. The classifier consists
of 3 dense layers (128, 128 and 60 neurons). We choose CNNs because they train much faster and
require less data than RNNs or Transformers.

BERT: Since the Huggingface transformers library [96] was allowed in the competition, we perform
the classification with some of its models, namely BERT [58] and distilled BERT [28]. We report here
only the results using BERT, since it achieves higher final NAUC, whereas distilled BERT has higher
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ALC. The reason of choosing NAUC over ALC is that we are interested in assessing how much better
an unconstrained complex language model can perform compared to our other approaches.

SVM: Unlike deep-learning methods, SVMs with linear kernels converge to a solution very
quickly. We focus on feature extraction when designing different solutions since brute-force tuning of
hyperparameters is prone to overfitting to certain datasets. In particular, we evaluate the following
SVM-based approaches:

• SVM 1-GRAM: A simple combination of word unigrams with a SVM classifier. Predictions are
crisp (0 or 1 per class).

• SVM 1-GRAM Logits: We extend the SVM 1-GRAM approach to return confidence scores for
the prediction.

• SVM N-GRAM: A single SVM model with the following features: word token uni- and bi-grams;
word token 1–3-grams with stop words removed; word token 1–7-grams; and finally character
token 2- and 3-grams. The maximum number of hash buckets per feature group is set to 100,000.
The Jieba tokenizer is used for Chinese texts.

• SVM N-GRAM Iterative: Like SVM N-GRAM, but multiple models, one per feature group,
are trained consecutively and then ensembled (see Figure 7). After every round prediction,
confidences are averaged over all the previously trained sub-models. Additionally, some
limitations on the data are imposed: in the first round text samples are clamped to 300 characters
and the maximum number of samples used per round is increased over time.

• SVM fasttext: Uses N-GRAMS (1–3) as well as the mean of word embeddings. A SVM is used as
the classifier and the same limits are used as for SVM N-GRAM Iterative method.

DeepBlueAI [97]: They apply multiple CNNs and RNNs in different iteration steps. In later stages,
the word embeddings given by the competition (fasttext for English and Chinese) are used.

Upwindflys [98]: They first use a SVM with calibrated cross validation and TF-IDF with unigrams
for feature extraction. In later steps, they switch to a CNN architecture.

TXTA [99]: It is very similar to the SVM 1-GRAM, but uses a much faster tokenization for Chinese.
For the feature extraction χ2 is applied to keep 90% of the features.

We consider the last three approaches that scored highest in the AutoNLP competition because
they are good representatives of the paradigms we compare: DeepBlueAI is a pure deep-learning
system, TXTA is a pure TF-IDF+SVM, and Upwindflys is a hybrid system, combining both approaches.

Figure 7. Text: Architecture of the SVM N-GRAMiterative model.

6.4. Experiments

In Table 10 we present the obtained performance results for the above approaches. It is visible that
in these 6 datasets no system is dominant. The best results are distributed across the three competition
winners. A more detailed analysis shows that in some datasets the SVM-based systems are more
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successful (O1, O2, O4), and in O3 and O5 the word-embedding systems perform better. This correlates
very well with the average characters per instance, i.e., the longer the text, the more difficult it is for
the deep-learning algorithms to perform classification, as shown later. In particular, the maximum
number of tokens allowed for the models is fixed in Keras, Tensorflow, and Pytorch. The values vary
from 800 for Upwindflys to 1600 for DeepBlueAI, where in later stages a data-dependent number of
tokens was allowed (greater than the length of 95% of the samples). Interestingly, BERT achieves a
very good result in terms of NAUC in the O1 dataset. We can already see here that the length of the
input is a parameter with a larger degree of variability for which the deep-learning approaches—and
also one that they are particularly sensitive to.

Table 10. Text: ALC and NAUC performance of evaluated text classification models. Best performances
are marked in bold.

Dataset DEMO-ZH O1-EN O2-EN O3-EN O4-ZH O5-ZH
Metric ALC NAUC ALC NAUC ALC NAUC ALC NAUC ALC NAUC ALC NAUC

CNN 0.7429 0.8156 0.6260 0.6486 0.6630 0.8450 0.1462 0.2460 0.3454 0.9812 0.3422 0.8510
SVM 1-GRAM 0.7699 0.7834 0.6338 0.6344 0.8170 0.8368 0.1241 0.1344 0.6189 0.9718 0.6895 0.7600
SVM 1-GRAM Logits 0.8902 0.9152 0.7829 0.7840 0.9271 0.9616 0.7382 0.8412 0.5125 0.9976 0.8083 0.9312
SVM N-GRAM 0.8541 0.9390 0.7812 0.8080 0.5540 0.9652 0.1711 0.8562 NA NA 0.6322 0.9336
BERT 0.4141 0.9036 0.7143 0.8624 0.2853 0.5144 NA NA 0.1974 0.5296 0.0105 0.1194
SVM N-GRAM Iterative 0.9310 0.9350 0.7745 0.7770 0.9499 0.9570 0.8151 0.8398 0.9842 0.9934 0.9075 0.9170
SVM fasttext 0.9308 0.9342 0.7645 0.7668 0.9433 0.9498 0.8214 0.8428 0.9858 0.9926 0.9137 0.9232

DeepBlueAI 0.9741 0.9932 0.7428 0.7610 0.8853 0.9022 0.7277 0.8092 0.9406 0.9984 0.9204 0.9456
Upwindflys 0.9211 0.9288 0.8060 0.8086 0.9395 0.9710 0.8336 0.8512 0.9810 0.9960 0.9060 0.9458
TXTA 0.9156 0.9176 0.7895 0.7902 0.9549 0.9670 0.8060 0.8364 0.9689 0.9938 0.9131 0.9368

Using the confidence (logits) of the classifiers instead of crisp predictions already improves the
ALC score by on average about 28%. Especially in O3 this is a major factor. The use of multiple n-gram
ranges allows the final NAUC value to consistently be slightly higher except for dataset O3 for which
it ran out of memory. This is probably due to the calculation of the n-grams being made independently,
causing a large amount of redundant words being stored. Adding fasttext features to our approach
but limiting the n-gram range to only 1–3 does not change the NAUC much, but in 3 datasets the ALC
is much higher for the embedding approach and for two of them slightly lower. A major difference
between our CNN and the first step of the DeepBlueAI and Upwindflys approaches is that they use
CNN blocks in parallel and not sequentially, and use multiple filter sizes. The end results show the
superiority of the parallel approach.

Table 11 gives an overview of all results, ranked by ALC. It can be seen that our approaches are the
best over both languages in the offline datasets, by consistently achieving high performance. Looking
at each individual language, Upwindflys achieves slightly better results for English. Interestingly,
there is a noticeable correlation between the performance and the average number of characters used by
certain approaches, pointing to the length effect. DeepBlueAI system’s ranks display a strong correlation
with the average number of characters (0.5). The approaches based on TF-IDF on the other hand show
a negative correlation, i.e., they perform better when the text is longer, especially our approach (SVM
N-GRAM Iterative with a correlation coefficient of −0.445). The hybrid approaches, SVM fasttext
and Upwindflys, have approximately the same negative correlation of about −0.3, not far from TXTA
with −0.2. The TF-IDF baseline with logits shows no correlation. The baseline CNN clearly achieves
better ranks when the samples are long (−0.8), although this improvement is not usually high (ranks
improving from 10 to 8, see Table 10), and more due to other approaches not finishing at all (e.g., BERT
and SVM N-GRAM). Since the deep-learning approaches seek to find correlations even between the
start and the end of the text sample, this might cost much time when training. Especially the speed of
convergence to a low error might be hurt by the sentence length in this context. On the other hand,
TF-IDF approaches will likely scale linearly with the sentence length.
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Table 11. Text: Average rank over ALC, for all datasets and per language; Corr-char: correlation
between rank and average number of characters per sample.

Language ALL EN ZH Corr-Char

CNN 7.5 7.3 7.7 −0.800
SVM 1-GRAM 6.3 6.7 6.0 0.170
SVM 1-GRAM Logits 5.3 4.3 6.3 0.004
SVM N-GRAM 7.8 8.0 7.7 0.293
BERT 8.3 8.0 8.7 0.368
SVM N-GRAM Iterative 2.7 2.7 2.7 −0.445
SVM fasttext 2.5 3.0 2.0 −0.343

DeepBlueAI 3.7 5.0 2.3 0.566
Upwindflys 3.0 2.0 4.0 −0.308
TXTA 3.2 2.3 4.0 −0.208

6.5. Interim Conclusions

A very clear pattern and conclusion of the challenge is the length effect, namely that TF-IDF
with SVMs are unmatched for long texts to optimize anytime performance with resource limitations.
By contrast, deep-learning methods (especially pretrained) are very difficult to beat in the setup with
short texts. The number of instances does not show such a significant correlation. Clearly a basic
understanding of preprocessing each language is a key factor to speed up this fundamental step in
the pipeline. Although many systems are based on CNNs, these networks are very sensitive to their
initialization. Some approaches chose to use multiple modules in parallel, and so individual model’s
shortcomings could be masked. A final observation is that the offline datasets are fairly easy to train
well, with the lowest top score of final NAUC being 0.8562. This could have influenced the visibility
of sponge effect that could not be confirmed here, although it has already been observed in textual
data [25].

7. Methods for Tabular Data

We investigate tabular data in the context of the AutoWSL challenge of the AutoDL 2019
competition. It consists of binary classification tasks on tabulated data which is either partially
labeled or noisily labeled. These settings can occur in different situations, e.g., when data labeling
is too expensive (semi-supervised learning), when annotators are not reliable (learning from noisy
labels), or when only positive examples are available as e.g., when modeling people who bought a
certain item (positive-unlabeled or PU learning).

7.1. Background

The classification tasks are divided into three sub-tasks as follows:

1. Semi-supervised learning: The dataset contains a few correctly labeled positive and negative
examples. The remaining data is unlabeled.

2. Positive-unlabeled (PU) learning: The dataset contains a few correctly labeled positive samples.
The rest of the data is unlabeled. In contrast to the previous task, the classifier does not have
access to any negative labels in the training data.

3. Learning from noisy labels: All the training examples are labeled. However, for some of the
examples, the labels are flipped, introducing noise in the dataset.

The available data consists of tabulated data that may contain continuous numerical features,
categorical, and multi-categorical features, and timestamps. We use three datasets (one per task)
for training and development, while model evaluation is performed using 18 validation and 18 test
datasets respectively (each consisting of six datasets per task). In contrast to the other modalities,
no GPU support is allowed by the sub-challenge regulations and the allocated resources only consist
of 4 CPU cores and 16 GB of memory. Moreover, in contrast to the other modalities, only one trained
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final instance of each model is evaluated per task. The area under the ROC curve for that model is
then used as the evaluation criterion for that dataset.

7.2. Preliminary Findings

The literature on weakly supervised learning is extensive. Most of the current state-of-the-art
algorithms use deep-learning architectures [100,101]. During preliminary experiments, the lack of
GPU support led to extremely long training times on deep-learning methods to obtain reasonable
accuracy, rendering them impractical for the AutoWSL use-case. Other recent work either requires
extra information about the data, such as the class-prior probabilities [102], or is incompatible with
existing libraries for decision tree-based methods. These methods are however preferable for the
task at hand since they can incorporate categorical data without the need to learn any continuous
representations for the different categories.

Given the nature of the data (i.e., being composed of different types of features), the lack of any
apparent structure (unlike in previous sub-challenges), and based on preliminary experiments on
current state-of-the-art models, we decide to develop heuristics-based solutions for this modality.

7.3. Approach per Sub-Task

We base our approach on the library that uses the gradient boosting framework LightGBM [103–105]
in conjunction with decision tree-based learning algorithms. Since the performance of decision tree
methods is heavily dependent on the choice of hyperparameters, we use the hyperopt [106] library for
distributed, asynchronous hyperparameter optimization.

Semi-supervised learning task: We use iterative training on the already labeled data and
pseudo-labeling of unlabeled data to train LightGBM models. In the first iteration, we start with
the provided labeled data and train a boosted ensemble of LightGBM models on it. Following this
training, we pseudo-label the unlabeled data using predictions of the trained ensemble. In subsequent
iterations, each LightGBM model is trained on the provided labeled data along with data randomly
sampled from the originally unlabeled data. Feeding each part of the ensemble with a different sample
ensures that the boosted ensemble does not overfit to incorrectly pseudo-labeled samples.

We experimented with different sampling strategies from the pseudo-labeled data. If we prioritize
sampling high-confidence examples, we would see a very slow increase in accuracy for new iterations
as these examples would be close to the originally labeled data. We also observe that using a large
proportion of pseudo-labeled examples compared to the amount of originally labeled examples
degrades the performance of our models. Consequently, for each model, we choose to sample uniformly
at random, with an equal number of positive and negative newly labeled examples. The number of
samples for each class is set to be equal to the minimum of the number of positively and negatively
originally labeled samples. We find that the performance of our models saturates after 2 to 3 iterations.

Positive-unlabeled (PU) learning task: We alter the approach used for the semi-supervised learning
task to adapt it for PU learning. Since we only have access to positive and unlabeled data points for the
first iteration, each model of the ensemble is trained on the positively labeled data points and an equal
number of points sampled from the unlabeled points as well as samples pseudo-labeled as negative.
Since we use a different sample of unlabeled data for each model, the error rate is kept relatively low.
After the first iteration, we follow the exact same approach as for the semi-supervised case. Learning on
noisy labels: We use different existing approaches for training classification models using noisy data,
e.g., prototype mining [107]. However, we find that training extremely weak LightGBM classifiers and
using a boosted ensemble of these classifiers gives the best results in the fixed amount of time given.
This observation points to the efficacy of using such a method in a time and resource-constrained setting.

We compare our algorithms with those of the top three ranked approaches in the competition:
DeepWisdom [108], Meta_Learners [109], and lhg1992 [110]. Table 12 gives a brief overview of the
heuristics and frameworks used by these teams and us. We notice that all the leading submissions have
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their solutions built around decision trees using LightGBM and differ mostly in the applied heuristics.
A strong emphasis is put on hyperparameter optimization.

Table 12. Tabular: Brief overview of ingredients used by leading submissions in the AutoWSL
competition.

Team (Rank)

PU and Semi-Supervised
Learning Tasks Learning on Noisy Data

LightGBM

Using a
Meta-Classifier

to Generate
Labels for

Unlabeled Data

Learning
Importance of
Each Feature

Using
a Metamodel

LightGBM
Data Cleaning

for Learning on
Noisy Labels

Using an
Ensemble of

Extremely Weak
Classifiers

Down-Weighing
and Removal
of Potentially

Noisy Data

DeepWisdom (1) D D D

Meta_Learners (2) D D D

lhg1992 (3) D D D D

Ours (6) D D D D

7.4. Interim Conclusions

A remarkable insight from this work on AutoDL for tabular data is that shallow or decision
tree-based models are still relevant to the domain of weakly supervised machine learning—in contrast
to the current literature. As we consider a resource-constrained (i.e., no access to GPUs) as well
as data-constrained (weak supervision) setting, the poor performance of deep-learning models
(extremely low scores or exceeding time constraints) calls for a renewed interest in the usage of
classical machine-learning algorithms for computationally efficient yet robust weakly supervised
machine learning.

The extensive use and benefit of hyperparameter optimization tools such as hyperopt also stresses
the importance of hyperparameter search in data-constrained settings. The success of the use of these
tools calls for more research into using other hyperparameter optimization tools such as Bayesian
optimization for similar settings.

8. Discussion

In this section, we present all the characteristic behaviors found throughout the evaluations in
this paper in a compressed and concise way (see Table 13), followed by an in-depth discussion of the
design patterns distilled from said behaviors.

Sponge effect: We discover that large fully connected layers at the top of a neural network drastically
increase the initial training speed of the model. A thorough examination of this behavior shows that
it is consistently present in models for vision and for audio processing (as well as for text, according
to previous research [25]). From this we propose that models built for fast training should use larger
classifiers than usual (i.e., larger than advised when focusing on combating overfitting). However,
there is a trade-off between obtaining a faster training speed and having a higher chance of overfitting
in the later stages of training that can be reduced by other means such as early stopping.

Length effect: Our evaluations in text processing reveal a behavior that resource-constrained
deep-learning approaches generally outperform TF-IDF features with classical SVM-based methods
on short texts while the latter perform better on long ones. The expected advantage of deep-learning
methods is only present in text lengths in the order of hundreds of characters or shorter, especially
for models based on pretrained word embeddings. Texts with a length in the order of thousands
of characters or more are more efficiently dealt with using traditional ML methods such as SVMs,
coupled with feature extraction methods such as TF-IDF when resources are strictly limited.

Tuning effect: In a heavily computing- and data-constrained setting, modern deep-learning models
have been out-performed by simple and lightweight traditional ML models in different modalities
including text and tabular data. However, pertained models on large datasets demonstrate a better
performance than randomly initialized ones for computer vision tasks. This behavior points towards
the design pattern that in such settings the best use of time and resources is to use a simple traditional
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ML model and redirect most of the resources into hyperparameter tuning, since these models have
been shown to be very hyperparameter sensitive.

Pretraining-effect: The use of tried and true architectures in conjunction with pretraining has been
shown to be incredibly effective in computer vision in contrast to the tuning effect observed for text
and tabular datasets. However, tested and pretrained lightweight models are not available for all
modalities and applications. From this we conclude that the first step in designing an automated
deep-learning system is a thorough check for the availability of such models. The outcome of this test
has a profound effect on how the problem at hand is best tackled. With pretrained models available,
fine-tuning in combination with hyperparameter tuning is usually the optimal choice. In the absence
of such models, however, it is the best choice to employ task-wise architecture search.

Reliable insights through empirical studies: One of the main conjectures of this paper is that in the
absence of a solid theoretical foundation to derive practical design patterns and advice, the most
promising approach to obtain such design guidance are systematic empirical evaluations. We showed
that such evaluations can indeed be leveraged to obtain model design principles, such as the different
effects discussed earlier in this section. Our evaluations also reveal information that is slightly narrower
in applicability, but is still valid across several data modalities, such as the clear supremacy of spatial
pooling and a learning rate of 0.001 for vision models in our context.

Dominance of expert models: Although task and data modality-specific models persistently
outperform generic models in recent research, the holy grail of multi-modal automated deep learning
is a single model that is able to process data of any modality in a unified way. Such a model would
be able to produce more refined features trained on all modalities, therefore making best use of the
available data with highest efficiency. A look at our results as well as at the results of the 2019 AutoDL
challenges as a whole reveals that the currently used and top performing models are all expert models
for a specific modality and task. This shows that the current state of the art is quite far away from a
multi-purpose model powerful enough to compete with its expert model counterparts.

Ensembling helps: Ensembles of models generally perform better than any single model within the
ensemble. This comes at the drawback of increased computational cost, which leads to the intuition
that ensembling is an unsuited approach for a resource-constrained setting. Our experiments on
ensembles in Section 5.4 show that this intuition is wrong and ensembling can also be beneficially
employed under strict resource constraints for small datasets.

Table 13. Discussion: Overview of the identified patterns in the evaluations throughout this paper.

Modality Finding Section(s)

Images MobileNetV2 is preferred over EfficientNet in a resource constrained environment for simple datasets Section 4.2
Images, Video Spatial pooling is preferred over flattening or temporal pooling Section 4.3
Images, Audio Increasing the size of the fully connected classifier increases the sample efficiency of the model Sections 4.3 and 5.6
Audio Audio preprocessing hyperparameters are non-universal Section 5.2
Audio Architecture search is preferred in model design for small datasets Section 5.3
Audio Small sized datasets allow using model ensembles even under resource constraints Section 5.4
Text The hashing trick allows for fast computation of TF-IDF Section 6.2
Text In NLP neither SVM nor deep-learning or hybrid systems are clearly superior Section 6.4
Text The use of multiple n-gram ranges consistently improves final performance Section 6.4
Text The use of multiple CNN blocks in parallel clearly improves anytime performance Section 6.4
Text SVMs work better on long texts while deep learning is superior on short text samples Section 6.5
Tabular Decision tree-based methods in a weakly supervised setting are extremely dependent on good hyperparameters Section 7.2
Tabular Sample selection for pseudo-labeling has to be carefully tuned not to be too slow (no progress) or too fast (degrading

performance)
Section 7.2

Tabular A combination of boosting and very weak LightGBM classifiers works best for noisy labels Section 7.2
Tabular Shallow machine learning is still very relevant especially in data- and computing-constrained scenarios Section 7.4

9. Conclusions and Outlook

In this section, we present concluding remarks and give directions for areas where we deem
future work to be necessary.

Multi-modal training as a way forward: The similarities in the architectures used for audio and visual
data analysis, except modality-specific preprocessing, lead us to propose a unified audio-visual AutoDL
architecture. It has shown first merits in preliminary experiments [111] (see Figure 8). It is appealing
due to the following performance-enhancing factors: it makes results and experience in one domain
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explicitly available in the other (e.g., leverages computer vision results of audio processing), and the
core processing block (backbone) of the model makes best use of all the available data, including its
inter-dependencies [112]. Finally, similar architectures for audio-visual analysis put a spotlight on the
multi-modal information fusion as an important direction for future research if the above-mentioned
holy grail of automated (deep) learning is to be accomplished. The architecture depicted in Figure 8 is
highly relevant for practical applications in which simultaneous audio-visual analysis is in demand.
The modality-specific preprocessing and information fusion blocks provide the flexibility of using
similar architectures for audio, image, and video processing.

Figure 8. Future work: Block diagram of proposed automated audio-visual deep-learning approach.

Automated preprocessing, augmentation, and architecture search: Three main challenges of audio
processing are: the number of preprocessing parameters, overfitting, and finding an optimal
architecture. Therefore, audio data analysis would greatly profit from automation in optimizing
the hyperparameters of the preprocessing step as well, especially since a great deal of knowledge is
transferable from the computer vision literature to audio processing when using spectrograms as a
two-dimensional input to CNNs. Overfitting has been an issue for most of the modalities discussed
in this paper. However, weight penalization methods such as L2 regularization slow down the
training speed and are therefore unsuited for a time-sensitive setting. Early stopping is an effective
technique, but when training data is sparse it is often unfeasible to set aside enough data in order to
estimate the validation error up to a usable precision. Computer vision has another valuable tool at
its disposal: automated input augmentation search. This is not commonly used in other modalities
such as audio processing. We believe that an input augmentation search technique in the spirit of
AutoAugment [84] for audio would be of great benefit for the whole field. Automated architecture
search for audio processing, similarly to automated augmentation policy search, is a promising future
research direction, especially for work on small datasets.

Renewed interest in classical ML: Although there are efforts to make deep-learning NLP approaches
more efficient [28], the contemporary approach is to simply scale existing models up. As large
texts have more redundancy and can be handled differently, methods analogous to shotgun DNA
sequencing [113] can be applied. Here, randomly selected sections of the DNA sequence are analyzed,
which when adapted for text could cover more ground and diminish redundancy in the computations.
Our evaluations have also led us to using classical ML in different cases due to data and computing
constraints. Especially the case of weakly supervised learning is tied, by definition, to scarce data
(at the very least to scarcely available labels). Consequently, all the top teams of the AutoWSL challenge
have used classical ML in conjunction with handcrafted heuristics. This stands in contrast to the recent
weakly supervised learning literature, which strongly focuses on deep learning. We conjecture that a
renewed interest in research on classical ML in the weakly supervised learning domain would lead to
results that are very valuable for practitioners.

Scale pattern in sequential textual data: It is not clear why the sponge effect was not observed
directly in the textual data, although there is evidence that it exists [25]. The relation is probably
dependent on characteristics of the specific dataset. The characteristics that steer this dependency
should be investigated.

In short, this paper distills our studies in the context of the 2019 AutoDL challenge series and
reports the outstanding patterns we observed in general model design for pattern recognition in
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image, video, audio, text and tabular data. Its essence are computationally efficient strategies and
best practices found empirically to design automated deep-learning models that generalize well to
unseen datasets.
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